1/27/20 Lecture outline
* Reading: Sections 10.1, 10.2, 10.3, 10.4

e Last time: the center of mass and rotation. Consider a collection of masses m,,
or a mass distribution p(7). The total mass is M = Y m, = [ dVp(F), where we use
either a sum or an integral as appropriate, and we can convert between them via e.g.
p(7) = >, mad3(F—74(t)). The total momentum is P = da MaTy(t) = [ dVp(F 3—7;. Write
P=M é where R is the center of mass (or center of momentum) position R= % > u MaTy
or R = = [ Fdm, where dm = p(¥)dV. Using Newton’s law, F = j . MCZQ CIf
ﬁext = 0, then the CM will move at constant velocity; we saw this in the two-body central
force section where F.,; = 0 and we took K = 0. Now define by 7, = R+ 7. Here

T, is taken to be a vector in an inertial reference frame with a fixed origin, and 7/, is the

a
position relative to an origin at the CM. Note that ) m,7, = 0.

e The angular momentum relative to the fixed origin is L= Y aTa X Moy = Rx P+
Yo T X mara , where two terms drop out thanks to >, m,7, = 0 and its derivative. This
shows that the total angular momentum is that of the CM plus that relative to the CM.
Now 4 R x P=RxP =R x Feet =Tt the external torque acting on the CM. Likewise

4 Za X P = S0, 7 x Fert = T¢%t| oy the external torque relative to the CM.
The total kinetic energy is T'= ) Qmaf.a = §MR + 3 Za Mafa 2.

. -/
e For rotation around a fixed axis, we replace 77, = Jx7,. Then T}, = % > MaTy 2 =

2> ma (W2 —(5-7,)?) = $1jswjwy, where Ly = 3, mqo (728, —rjry) = Ij (so I = I7T).

e The moment of inertia tensor Ij; also enters in Lmt > i Likwr, where L7t is the

CM rotational angular momentum: L™ = S T xmg (BXT) =Y, me(@rh2 =7, (5 7,)).

E.g. take & = w2z, then v, = w X 7y = —wWY,T + wr,y and £, = myr, X U, =
Mew(—24T0® — 2aYa§+ (22 +y2)2). The CM angular momentum thus has L, = I,.w where

I, =%, map2, where p2 = x2 + y2 is the distance of the point to the axis of rotation.
The products of inertia enter in e.g. L, = I w and Ly = I w, with I, = — " maT,2,
and I, = — >, MqYaZa-

e Example: consider a wheel of radius R that is rolling without slipping with velocity
V = V. The center of the wheel has y = R, and we then find w = —w% with w = V/R.
The velocity of a point on the wheel is ¥ = wWRZ + RW x 7, where 7 points from the center
of the wheel. For example, for the point of contact 7 = —¢ and ¢ = 0, and for the top of
the wheel ¥ = 2wRZ. A solid wheel has L, = I,.w, with I, = [ dmp? = JMR>.



e Example: for a cube of side length a rotating around its center (so [dm —

2 aﬁzd fa/Q dyfa/2 dz), get I, = ¢Ma?0;,. If the cube is instead rotating

around its corner (so the integrals are all foa instead of ffc/b 32), can compute to get
Ly = §Ma?6j, + 1 Ma?(36;; — 1).

ended here

e Parallel axis theorem: replace 7, — 7, = 7y — d (with >y MaTy = 0) for moment of
inertia tensor for rotations about an axis displaced to d. Get Ijk(cf) = I;1(0) + M(cpéjk —
d;dy). For example, for a solid wheel around a point on the rim this gives I,, = %M R?.

If the cube is instead rotating around a corner, take d = %a(l, 1,1) and then get
Ly = §Ma?6j, + 1 Ma?(36;; — 1).

e The eigenvectors w of the inertia tensor are called the principal axes, and the eigen-
values A\ are called the principal moments: L = \&. We can find three orthogonal eigen-
vectors W;—1,2 3 and write I in this basis as a diagonal matrix with the three eigenvalues
Ai=1,2,3 along the diagonal. For example, for a cube rotating around a corner, one of the
principle axes is along the diagonal, so &J; = w \/—(1 1,1), which has principle moment
eigenvalue \; = Ma?/6. The other two principle axes are perpendicular and here, because
of the symmetry, they have the same eigenvalue, Ao = A\3. The original I must have trace
equal to A\; + A2 + A3 and determinant equal to A\; A2 A3 (since the diagonalized matrix of
eigenvalues differs by a similarity transform I — R~'IR and the trace and determinant
are invariant under that. Indeed, find Ao = A3 = %M a?.

e We saw in the previous chapter that, for any vector C:j|smce = C:j\body 4+ @ x (oj
where “space” refers to an inertial frame that is fixed in the lab, and “body” refers to a
non-inertial frame that is fixed on the rotating body. Apply this to the case of angular
momentum to get Euler’s equation:

dE| , d% raxl
N = = — w .
dt space ext dt body

Use this and L; = Ixwy, to determine the dynamical rotation &(t) of the body.



