
1/13/20 Lecture outline

⋆ Reading: Taylor Chapter 8.

• Last time: orbit equations have solution r = r(t) determined from µd2r
dt2

= − d
dr
Ueff

with Ueff ≡ ℓ2

2µr2 + U , or 1

2
µṙ2 + Ueff = E, and φ = φ(t) determined from ℓ = µr2φ̇.

Let’s study the shape of the trajectory rather than the t dependence. Eliminating the

parameter t, we can solve for r = r(φ). To do this, use

d

dt
= φ̇

d

dφ
=

ℓ

µr2
d

dφ
=

ℓu2

µ

d

dφ
,

where u = 1/r is introduced for convenience. So

dr

dt
= − ℓ

µ

du

dφ
,

d2r

dt2
= −ℓ2u2

µ2

d2u

dφ2
,

and the r EOM becomes (with F (r) = −dU/dr)

u′′(φ) + u+
µ

ℓ2u2
F (r) = 0.

Energy conservation is

E = 1

2
µ

(

ℓ

µr2
dr

dφ

)2

+
ℓ2

2µr2
+ U(r),

which we can use to solve for dr/dφ, and then integrate the equation to obtain

φ− φ0 =

∫ r

r0

ℓdr/r2
√

2µ(E − Ueff (r))

Example: for a free particle, U(r) = F (r) = 0 and the solution of the EOM is u(φ) =

r−1

0
cos(φ− δ), the equation of a straight line, good, with E = ℓ2

2µ
r−2

0
= 1

2
µv2

0
.

• For general U(r), circular orbit at points r = r0 where U ′

eff (r0) = 0. Stable if

U ′′(r0) > 0. Then consider nearly circular orbits by expanding r = r0 + ǫ(t) and find

d2ǫ

dt2
= −

U ′′

eff (r0)

µ
ǫ ≡ −ω2ǫ,

which has solution ǫ = ǫ0 cosωt, with ω ≡
√

U ′′

eff (r0)/µ the frequency of oscillation about

r = r0. For circular orbits, u = u0 =constant. For nearly circular orbits, we can write

u = u0 + δ(φ) and expand the above to find an equation for δ(φ). Let’s instead write it in
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terms of the original variable r, so r = r0 + η(φ) and then plug into the equation above to

find
d2η

dφ2
= −β2η,

where

β2 ≡ 3− µr40
ℓ2

F ′(r0).

A solution is η(φ) = η0 cosβφ. The maximum is chosen at φn = 2πn/β.

• Kepler orbits: U(r) = −k/r, so F (r) = −k/r2. (Sign is chosen so that k > 0

corresponds to an attractive force). Get

u′′(φ) = −u(φ) + kµ/ℓ2,

which is like the free particle, if we substitute w = u− kµ/ℓ2, so

r(φ) =
c

1 + ǫ cosφ
, c ≡ ℓ2

kµ
. (1)

where ǫ is a constant, which can be written in terms of the energy as

ǫ =

√

1 +
2Eℓ2

µk2
.

So ǫ < 1 gives bounded orbits, and ǫ > 1 gives unbounded orbits. For ǫ < 1 the

equation is an ellipse (with special case being a circle for ǫ = 0). For ǫ > 1 it is a

hyperbola. For ǫ = 1 it is a parabola.

• For E < 0 (bound orbits) get ǫ < 1, and the above conic section is an ellipse. The

ellipse has major and minor semi-axes given by

(x+ d)2

a2
+

y2

b2
= 1, a =

c

1− ǫ2
, b =

c√
1− ǫ2

, d = aǫ.

The ellipse has foci at (0, 0) and (−2d, 0) and is the set of points such that the sum of the

distances to each foci is 2a. Then

b

a
=

√

1− ǫ2, rmin =
c

1 + ǫ
, rmax =

c

1− ǫ
.

Also,

rmin =
c

1 + ǫ
= a(1− ǫ), rmax =

c

1− ǫ
= a(1 + ǫ).
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Since 1− ǫ2 = −2Eℓ2/µk2 = 2|E|ℓ2/µk2 we have

a =
k

2|E| , b =
ℓ

√

2µ|E|
.

The energy is

E = Ueff (rmin) = − k

rmin
+

ℓ2

2µr2min

=
k2µ

2ℓ2
(ǫ2 − 1).

The period of revolution is given by recalling dA/dt = ℓ/2µ (Kepler’s 2nd law), so the

period is τ = A/Ȧ = 2πabµ/ℓ so

τ = 2πa3/2
√

µ

k
= πk

√

µ

2|E|3 .

Note that the period is uniquely determined by the energy.

For a comet or planet orbiting the sun, k = Gm1m2 ≈ GµMs so τ2 ≈ 4π2a3/GMs;

Kepler’s 3rd law.

• For ǫ = 1, get y2 = c2 − 2cx, a parabola. For ǫ > 1, get hyperbola:

(x− δ)2

α2
− y2

β2
= 1.

• Orbit change by tangential thrust at perigee. Initial and final orbits have the same

perigee

rmin =
c1

1 + ǫ1
=

c2
1 + ǫ2

.

The velocity at perigee changes to v2 = λv1. (The two orbits are not trivially related

by mechanical similarity, since not all lengths are related by the same rescaling.) Since

ℓ2 = λℓ1, we have c2 = λ2c1 and thus ǫ2 = λ2ǫ1 + λ2 − 1 > ǫ1, i.e. the orbit becomes more

eccentric for λ > 1.
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