1/13/20 Lecture outline
* Reading: Taylor Chapter 8.

e Last time: orbit equations have solution r = r(¢) determined from p4 dt2 = _dirUeff
with Uepy = Qﬁ% + U, or %w‘z +Ucpp = E, and ¢ = ¢(t) determined from ¢ = ur2o.
Let’s study the shape of the trajectory rather than the ¢ dependence. Eliminating the

parameter t, we can solve for r = r(¢). To do this, use
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where u = 1/r is introduced for convenience. So
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dt ~  pde  d2 2 de?’
and the r EOM becomes (with F(r) = —dU/dr)

W (¢) +u+ ;?F(r) —0.

Energy conservation is
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which we can use to solve for dr/d¢, and then integrate the equation to obtain
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Example: for a free particle, U(r) = F(r) = 0 and the Solution of the EOM is u(¢) =

ot cos(¢ — §), the equation of a straight line, good, with E = 2u ro = vag.
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e For general U(r), circular orbit at points r = ro where U/;;(ro) = 0. Stable if
U"(r¢) > 0. Then consider nearly circular orbits by expanding r = ¢ + €(¢) and find
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de _ Upg(ro) _ o
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which has solution € = €y coswt, with w = /U ;(ro)/p the frequency of oscillation about

r = rg. For circular orbits, u = ug =constant. For nearly circular orbits, we can write

u = ug + 0(¢) and expand the above to find an equation for d(¢). Let’s instead write it in
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terms of the original variable r, so r = ro + 1(¢) and then plug into the equation above to
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where
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T
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A solution is n(¢) = ng cos f¢. The maximum is chosen at ¢, = 27n/f.
e Kepler orbits: U(r) = —k/r, so F(r) = —k/r%. (Sign is chosen so that k& > 0

corresponds to an attractive force). Get

W(6) = —ul() + ky/ 2,
which is like the free particle, if we substitute w = u — ku/¢?, so
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where € is a constant, which can be written in terms of the energy as

2E¢?

e=4/1+ qu.

So € < 1 gives bounded orbits, and € > 1 gives unbounded orbits. For € < 1 the
equation is an ellipse (with special case being a circle for ¢ = 0). For ¢ > 1 it is a
hyperbola. For ¢ =1 it is a parabola.

e For £ < 0 (bound orbits) get € < 1, and the above conic section is an ellipse. The
ellipse has major and minor semi-axes given by
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The ellipse has foci at (0,0) and (—2d,0) and is the set of points such that the sum of the

distances to each foci is 2a. Then
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Also,




Since 1 — €2 = —2F(?/uk? = 2|E|(?/uk?® we have
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The energy is
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E = Ues(rmin) = — (€ -1).

The period of revolution is given by recalling dA/dt = ¢/2u (Kepler’s 2nd law), so the
period is 7 = A/A = 2mabu/{ so
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Note that the period is uniquely determined by the energy.

For a comet or planet orbiting the sun, k = Gmyms ~ GuM, so 72 ~ 4n2a®/GM,;
Kepler’s 3rd law.
o For e =1, get y? = ¢® — 2cx, a parabola. For € > 1, get hyperbola:
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e Orbit change by tangential thrust at perigee. Initial and final orbits have the same

perigee
C1 C2
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The velocity at perigee changes to va = Avy. (The two orbits are not trivially related

T'min =

by mechanical similarity, since not all lengths are related by the same rescaling.) Since
0y = My, we have ¢y = A?cy and thus e; = A\%e; + A2 — 1 > ¢, i.e. the orbit becomes more

eccentric for A > 1.



