3/13/20 Lecture outline
* Reading: Taylor chapter 16.1 to 16.11

e Last time: recall pressure: in a static, ideal fluid, the surface force dF on any
area element dA is dF = —pdff. More generally, the area element dA can have forces

dF' = Z§:1 0 dAJ where 0¥ is called the stress tensor and, for the case of a static, ideal

fluid 0% = —pd¥. dE‘ A a
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e If we consider a tiny square in the (12) plane then it would have torque around the
3 axis ~ (0'? — 02!) but if we scale the lengths to zero the angular momentum scales to
zero more rapidly than this torque, which proves that 0% = ¢7¢. The 0% stress tensor
components are the space components of the stress-energy tensor T+ that we discussed
in relativity: 7% = —¢*. Indeed, ¢cP' = [, d*zT"™ and then dd—lzi = [d320,T" =
— [d®20,TY = [dA;o" where we used 9,T" = 0 and Gauss’ law for integrating a
divergence. The result fits with dF* = 0“dA’. For a closed surface OdV that is the
boundary of dV, get dF* = 0;67dV; for the case of an ideal static fluid this becomes

dF = —VpdV. q\d“_: ﬁ,dg
—F = Ui, A
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e Consider displacements in a solid from equilibrium: (¢, ¥) = &’ — ¥, where 2’ is the
deformed position. The 4 is the analog of our displacement y(x,t) in the case of a string.
We can picture a bunch of coupled oscillators, and (¢, ¥) encodes their displacement from
equilibrium. We expect to get a linear wave equation for «# in the simplest cases, with

small displacements from equilibrium.
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e The u lead to a 3 x 3 symmetric tensor called the strain tensor. One way to see it is

to note that the deformation leads to df'? = d#? = (dZ + dit)?> = d¢® + 2u;;dx;dx;, where
Ui = %(Biuj + 0ju; + Ojur0jur) =~ %(Biuj + 0ju;), where the last term is dropped because
displacements are usually small. w;; is called the strain tensor. The book calls it E. As

you checked in the HW, rotations do not contribute to u;; because they are antisymmetric.
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e So we have two 3 x 3 tensors: the stress tensor o;; related to the forces, and the strain
tensor u;; related to the displacements. For a small displacements, Hooke’s law linearly
relates forces to displacement, as in the case of a spring. More generally, it linearly relates
o and u;;:

1 (a—pB)

u= w[iﬂaa — (a— B)1(tro)] < o=

(tro)1 + pu.

Here o = 3MB and g = 25M where BM is the bulk modulus, and SM is the shear
modulus. The bulk modulus arises as dp = —BMdV/V for the case of pressure only, so
oij = —pd;; and then w;; = ed;; so e = —p/a = %dV/V. The shear modulus arises when
tru = 0 and then o = fu. Young’s modulus is YM= 3a5/(2a + ().



e The EOM for the displacement  is paazt%i = pg' + 0j0%. Using Hooke’s law gives
Navier’s equation for @: get 8;0 = (BM + $SM)V¥(V - @) + SM V?u' and thus

24 1
p% = pj+ (BM + gSM) V(V @)+ SM VZ?i.

For longitudinal displacements e.g. 4 = (u,(z,t),0,0), neglecting the § term, this gives

a wave equation with c¢jong = \/ (BM + §SM)/p. For transverse displacements, e.g. @ =
(0, uy(z,t),0), this gives a wave equation with cirans = +/SM/p. Note that ciong > Ctrans;

gives a way to determine how far away the earthquake was.
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