3/6/20 Lecture outline
* Reading: Taylor chapter 16.1 to 16.11

e String: S = [dtdxL(,0p),0,0) has §S = [dtdzdy(t 93)( — Oy 525~ 8(8“!))
Oy 50, w)) + 0Spndy where we integrated by parts and 6Spnay = fdtda:@ (0 500, w))
[ dtép 555 8(8 1/)) lends is the kind of term that is usually dropped (e.g. if the endpoints are at
infinity and the fields anyway fall off there), but for a finite length string we need to impose
separately that Sp,q, = 0. There are two options: either §9|cnq = 0 or %ﬂend = 0;

these are called Dirichlet (fixed end) and Neumann BCs, respectively
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The Hamiltonian is H = [ daH, where the Hamiltonian density is H = P*dyp — L.

As we will discuss, space and time translation symmetry leads to a conserved stress-energy

o Let Pt = W and P* = a(a e Least action gives 8t .

tensor THY = a(gifw)&,w — N L, with 9,T*” = 0. In particular, if £ does not depend
explicitly on t then H = T satisfies the conservation equation O,H + 0,je = 0 with
Jje = a0, w)&gw the energy current flux.

e Uniform string of mass density p, tension T, with ¥ (¢, z) = y(¢, x) the displacement
from equilibrium in the y direction. An element of length dz has kinetic energy density
% pudz(0;y)? and potential energy density T'df = 1T( )2dx which comes from Taylor
expanding d¢ = \/dx? + dy? — dz. Thus S = [dtdzL with £ = s1(0y)? — 3T (0py)2.
Varying 6,5 = 0 gives the EOM, which can also be derived directly from dF, = udfy =
Tsin¢yiq, — T'sing|, and sing ~ tan¢ = % so dF, = dasTg%’. The EOM are the
wave equation (C%aa—:z — ;—;ﬁp(t, z) = 0 with ¢ = \/T/u. The wave equation is solved by
y =yr(x — ct) + yr(x + ct) for arbitrary functions yr and yy,.

The energy / Hamiltonian density is H = POy — L = %,u(@ty)z + %T(@my)Q. To see
its conservation law, note that O;H + 0, (—T0,ydwy) = 0 so je = —T0,y0y is the energy
flux along the string. Fory = yr(z—ct)+yL(z+ct), get £ = T[(yr(z—ct))?+ (v} (x+ct))?]

and je = eT{(yp(x — ct))? — (yp(x + ct))?]



