3/4/20 Lecture outline
* Reading: Taylor chapter 16.1, 16.2, 16.3

e We are starting a new topic: continuum mechanics, aka field theory. In the me-
chanics of point particles, we want to solve for particle positions ¢,(t). The action is
S = [dtL(qa, Gs) and 65 = 0 leads to the equations of motion for ¢,(¢). In field theory,
the dynamical quantities depend on both ¢ and some space coordinates. For example, the
displacement of a string from equilibrium is a field ¢ (¢, z). Then S = [ dtdzL(y), Oy, 0,1)).

e E&M is an example of a field theory. Can get Maxwell’s equations from least action
in the field A,, with Syieqs = [ d'd®zL with £ = — - F,, F* — 1A, 0 = L(E? - B?) -
po + lff . J. Note that it is relativistically invariant. Recall that F*¥ = gAY — 9V AM.
Varying the action 65 = [ d*xzd6A w (5 0L _ 9,-2% ) gives field Euler Lagrange equations.

v, A,
For Lggnr, this gives Maxwell’s equatlons: O FH = %J“.
The Lorentz force law, % = ft = 1F"y,, comes from S = ... — %fAMda:“. For

point charges q,, J* =), qa d(f: 6

then integrates to give the g, A,dz" term in the action for the charged particles.

(€ —24(t)). The A,J* term in the Lagrangian density

e In empty space, J* = 0, the solutions of Maxwell’s eqns satisfy a wave equation
0,0"¢ = 0, where 9,,0" = Cizg—; — V2 is Lorentz invariant and ¢ is E or B.

Example of solutions of the wave equation 1) = f(x — vt) for v = ¢ and any function
(plane wave moving along the z axis at v = ¢). ¥ = Ae~"#»*" if k2 = 0, i.e. w = ck.

e Fields carry energy and momentum. In E&M, energy and momentum can go be-
tween the fields and the particles, and only the totals are conserved. The field energy
density is Hfieta = %(E’Q + 52): the field energy in a region is Efielq = fv dPrH.
The field momentum in a region is Cﬁfield = ﬁ fV d%‘(ﬁ X E) In relativistic nota-
tion, we have P Field = = d333 ld where TH” = T"H is the stress-energy-momentum
tensor. It transforms like a Symmetric, two-index tensor under Lorentz transforma-
tions TH"' = A“/pA”/UTp". Just as electric charge @) = fV d3zJ°/c is conserved if
O, J* =0, likewise P* = [d3zT*0 is conserved if 8,T7"" = 0. For the case of E and M,
Tiig = 2= FPFY\ + 1521" FP7 Fpg. The conserved quantity is Tyur,, = Thisier + Thivias

where Tmatter - Za §§7§2 63 (l_:_l_:a( )) and 9 T#@Ztter =-90 T;Lzyeld = 1FW{J Integratlng
fits with the p = 0 component of 4 T = f# = LF"u, power loss for partlcles p 1 - E

using F*0 = E°.
e Just for fun: general relativity is another example of a field theory. Replace 7, with

a dynamical spacetime metric g, (). Einstein’s equations state that T#" acts as a source
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for derivatives of the metric (don’t worry about the details): R, — %Rg,w = SZ—4GT w- Get

it from least action for field g, via Spg = 161@ [ d*x\/=gR. The details are beyond the

scope of this class — here just illustrating some generalizations of the things that we’re

discussing. E.g. the solution for a mass M at the origin is the Schwarzschild metric:

ds* = (1 — (2GM/r))(cdt)? — (1 — (2GM /r)) " dr? — r2(df? + sin® 0d¢?).

Note that dra g = \/1 — (2GM /r 4, pdt so the person A with r4 > rp up ages more than
person B; atomic clocks are sufficiently precise to measure this difference, even for ~ 1
m high differences in the earth’s gravity field. If person A drops photons with wey,;; =
27 /T4, person B receives them with wp = 27/7p, and finds that they are gravitationally
blueshifted from their fall. Pound and Rebka measured this (using the Mossbauer effect)
in 1949 by dropping photons 20 meters in the Harvard physics building.

Black holes if 7opject < 2GM. The sign change of the terms at the horizon, and the

interpretation.



