
3/4/20 Lecture outline

⋆ Reading: Taylor chapter 16.1, 16.2, 16.3

• We are starting a new topic: continuum mechanics, aka field theory. In the me-

chanics of point particles, we want to solve for particle positions qa(t). The action is

S =
∫

dtL(qa, q̇a) and δS = 0 leads to the equations of motion for qa(t). In field theory,

the dynamical quantities depend on both t and some space coordinates. For example, the

displacement of a string from equilibrium is a field ψ(t, x). Then S =
∫

dtdxL(ψ, ∂tψ, ∂xψ).

• E&M is an example of a field theory. Can get Maxwell’s equations from least action

in the field Aµ with Sfields =
∫

dtd3xL with L = − 1

16π
FµνF

µν − 1

c
AµJ

µ = 1

8π
( ~E2− ~B2)−

ρφ + 1

c
~A · ~J . Note that it is relativistically invariant. Recall that Fµν = ∂µAν − ∂νAµ.

Varying the action δS =
∫

d4xδAµ(
∂L
∂Aµ

− ∂ν
∂L

∂νAµ

) gives field Euler Lagrange equations.

For LE&M , this gives Maxwell’s equations: ∂µF
µν = 4π

c
Jµ.

The Lorentz force law, dpµ

dτ
= fµ = q

c
Fµνuν , comes from S = . . . − q

c

∫

Aµdx
µ. For

point charges qa, J
µ =

∑

a qa
dxµ

dt
δ3(~x− ~xa(t)). The AµJ

µ term in the Lagrangian density

then integrates to give the qaAµdx
µ term in the action for the charged particles.

• In empty space, Jµ = 0, the solutions of Maxwell’s eqns satisfy a wave equation

∂µ∂
µψ = 0, where ∂µ∂

µ = 1

c2
∂2

∂t2
− ∇2 is Lorentz invariant and ψ is ~E or ~B.

Example of solutions of the wave equation ψ = f(x− vt) for v = c and any function

(plane wave moving along the x axis at v = c). ψ = Ae−ikµx
µ

if k2 = 0, i.e. ω = ck.

• Fields carry energy and momentum. In E&M, energy and momentum can go be-

tween the fields and the particles, and only the totals are conserved. The field energy

density is Hfield = 1

8π (
~E2 + ~B2): the field energy in a region is Efield =

∫

V
d3xH.

The field momentum in a region is c ~Pfield = 1

4π

∫

V
d3x( ~E × ~B). In relativistic nota-

tion, we have Pµ
field =

∫

d3xTµ0
field where Tµν = T νµ is the stress-energy-momentum

tensor. It transforms like a symmetric, two-index tensor under Lorentz transforma-

tions Tµ′ν′

= Λµ′

ρΛ
ν′

σT
ρσ. Just as electric charge Q =

∫

V
d3xJ0/c is conserved if

∂µJ
µ = 0, likewise Pµ =

∫

d3xTµ0 is conserved if ∂νT
µν = 0. For the case of E and M,

Tµν
field = 1

4πF
µλF ν

λ + 1

16πη
µνF ρσFρσ. The conserved quantity is Tµν

total = Tµν
matter + Tµν

field,

where Tµν
matter =

∑

a
pµ

a
pν

a

Ea/c2
δ3(~x−~xa(t)) and ∂µTµν

matter = −∂µTµν
field = 1

cF
νκJκ. Integrating

fits with the µ = 0 component of dpµ

dτ = fµ = q
cF

µνuν power loss for particles dp0

dτ = q
c~u · ~E

using F i0 = Ei.

• Just for fun: general relativity is another example of a field theory. Replace ηµν with

a dynamical spacetime metric gµν(x). Einstein’s equations state that T
µν acts as a source
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for derivatives of the metric (don’t worry about the details): Rµν − 1

2
Rgµν = 8πG

c4 Tµν . Get

it from least action for field gµν via SEH = 1

16πG

∫

d4x
√−gR. The details are beyond the

scope of this class – here just illustrating some generalizations of the things that we’re

discussing. E.g. the solution for a mass M at the origin is the Schwarzschild metric:

ds2 = (1− (2GM/r))(cdt)2 − (1− (2GM/r))−1dr2 − r2(dθ2 + sin2 θdφ2).

Note that dτA,B =
√

1− (2GM/rA,Bdt so the person A with rA > rB up ages more than

person B; atomic clocks are sufficiently precise to measure this difference, even for ∼ 1

m high differences in the earth’s gravity field. If person A drops photons with ωemit =

2π/τA, person B receives them with ωB = 2π/τB, and finds that they are gravitationally

blueshifted from their fall. Pound and Rebka measured this (using the Mossbauer effect)

in 1949 by dropping photons 20 meters in the Harvard physics building.

Black holes if robject < 2GM . The sign change of the terms at the horizon, and the

interpretation.
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