1/8/20 Lecture outline
* Reading: Taylor sections 13.1, 13.2, 13.3 , Chapter 8.

e Briefly emphasize something from Hamiltonian mechanics: H = H(q,(t), pa(t),t) so
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Where we used Hamilton’s equations ¢, = 0H/0p, and p, = —0H/dq,. So if H does not
explicitly depend on time, then dH /dt = 0 and H is a constant of the motion, as discussed
last time.
e Continue with two-body central force motion. The Lagrangian is assumed to be
translationally invariant in space and time, and rotationally invariant, so U(Zy,Zs,t) =
U(r) with r = |Z1 — Z5]:
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The symmetries imply conservation of total momentum, energy, and angular momentum:
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e We can choose an inertial frame of reference where p;,; = 0; this is called the
center of momentum (or sometimes called center of mass) frame. This means that R =
(m1Zy + moda)/M, with M = my + mo is chosen to be a constant. The dynamical

coordinate is then just the relative position ¥ = r; — 75 and we can write
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Then L = 7 x p, f= pr and p= —VU(r) = —Ccll—g?. The r here can be considered as in

either spherical or cylindrical coordinates. Cylindrical coordinates are better: since L is
constant, the motion stays in a plane. We can choose L = (% and then the motion is in

the (x,y) plane, 2 = 0, and the motion has generalized coordinates r and ¢ with
L=L1pr?+ Lur?¢? —U(r),
and the EOM are
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The ¢ EOM can be integrated to give
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The EOM for r is equivalent to a 1d theory with
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Legp(r,7) = spi® = Uepp(r),  Uegs = +U(r).

(Note that we substituted ¢ = ¢/ur? only *after* computing the r equations of motion, and
then wrote U.ss. Eliminating <;S too soon gives a wrong sign term in U.s¢.) Conservation

of energy:
H=F= %/“;2 + Uesy(r).
e Using above equations, we can solve the problem, reducing it to the computation of

two integrals. Rewrite the energy conservation equation as
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and integrate to get
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which can be inverted to find 7(¢). Then rewrite the conservation of angular momentum

equation as
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and integrate both sides to get
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We thus have obtained, in principle, r(t) and ¢(t).

e The case U ~ r? is the 3d SHO, which separates into 3 copies of the 1d SHO. The
case U ~ 1/r is the Coulomb potential and it is also very special, e.g. it leads to closed
orbits; this is related to the fact that it has an additional conserved quantity called the

Laplace-Runge-Lenz vector A= D X L— ukt is conserved for V. = —Fk/r.
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points 7,,;n and 7,4, for case E < 0: bounded orbit. For E > 0, there is a r,,;, but no

Our main example: U(r) = —=Gmimg/r. Uess(r) = _GmﬁmQ +

Tmaz: Unbounded orbit.



