2/24/20 Lecture outline
* Reading: Taylor chapter 15.
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e Last time: dz* is a 4-vector, and dr = dt/ is a Lorentz scalar, u# = &= = dz” dt _
’ ’ dr dt dr
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v(c, V) is a 4-vector version of velocity. Note that u,u” = c*.

e Energy and momentum combine into a 4-vector p* = (E/c, p), with p,p* = (mc)?.

So the mass m is Lorentz invariant. The energy is E = /(cp)? + (mc?)? which, for
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For massive particles, p* = mu*, i.e. E = ymc? and p = ym@. For a m = 0 massless
particle, like a photon, p*p, = 0 but we can still define ¥ and p. In fact, p* = hk"* where

k" = (w/c, k) with w = ck. For both massive and massless particles, 7 = pc?/E.
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e 4-vector version of acceleration: a* = G = Zut = v 5 (V) =V G S T

The space component of the first term is proportional to the non-relativistic acceleration,

but the vector in the second term need not even point in the same direction.

e The 4-vector version of force is f* = (power/c, f) and Newton’s laws are f = %.

Note that % = % (cp)? + (mc?)2 = %ﬁ. g_f =7 f

e Conservation of energy and momentum: for an isolated system we have translation
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1nvariance, and ftOt,GIt = 0 and then Zinitialparticles,i b; = Zfinalparticles,f pf For exam-
ple, n — pTe ., or ™ — y7. Mass is not conserved (e.g. 7¥ is massive and the photons
~ are massless), but the total energy and momentum are conserved. E.g. in the CM frame

70 — 4y each photon has E = c[p] = 2m,oc®. Write p| = p5 + p4 and illustrate using
p2 = m? etc.
e Lorentz transformations are a symmetry of Nature, and this is ensured by having the

action be Lorentz invariant. Let’s start with a free, massive particle; we want to generalize

2

S ~ [dt(3m@?). To get a Lorentz invariant, we can take S = —mc dr =

worldline

—mc? [ dt\/1 —0%/c?. Gives p= % = ym@ and properly reduces to L =~ %mUQ ifv<e.



