1/6/20 Lecture outline
* Reading: Taylor sections 13.1, 13.2, 13.3, Chapter 8.

e Recall classical mechanics v1: F = p, with § = ma’; 2nd order ODE for #(t).
Classical mechanics v2: Least action S = [ dtL(qq, qa, ) 0S = 0 — Euler Lagrange

equations for generalized coordinates and momenta: p, = with p, = 8qL Can focus

a :
on the right coordinate, e.g. the angle for a pendulum. Syrrimetrles <> conservation laws
(Noether): translation invariance <+ conservation of momentum, rotational symmetry <>
conservation of angular momentum, time translation invariance <+ conservation of energy.

e (Classical mechanics v3: Hamilton’s description. The Hamilton is related to the

Lagrangian by a Legendre transform (similar transforms appear in thermodynamics)
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The Lagrangian depends on the velocities ¢,, whereas the Hamilton is expressed instead in

terms of the momenta p,. To see what H depends on, note that, using the EL equations,
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the cancellation of the dqg term shows that H should not be regarded as depending on q.

Moreover, we can read off from the above Hamilton’s equations
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The (qq,pq) variables are called phase space and the second order ODE for g,(t) is
replaced with two first order ODEs for q,(t) and pq,(t).

e Example: the SHO, with L = imi? — émw x2. The EL equations are Cr 2

2 a2 —w T,
and are solved by x = A cos(wt+¢p), with A and ¢ the expected two constants of integration,
which can be determined by the initial position and velocity. The Hamiltonian is H =

22?2 and Hamilton’s equations are & = p/m and p = —mw?z. The solution of
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these equations is an ellipse in phase space © = A cos(wt+), p = mi = —mwA sin(wt+).
Since H does not depend explicitly on ¢, the Hamiltonian is a constant of the motion, and

in this case this gives an ellipse:

— + %mw ¢ = %mszQ = constant.



e The 110a class last quarter did not get to two-body central force motion. This is an
important topic, so we will cover it now.

Consider two point masses, m; and mq, with locations #1(¢) and Z2(¢). We can apply
this for example, to the sun and the earth in the approximation where we ignore the
fact that they’re not really point masses; this is a pretty good approximation because
their separation is so large compared to their radii. The Lagrangian is assumed to be
translationally invariant in space and time, and rotationally invariant, so U(Z1, 3, t) =
U(r) with r = |& — Za|:
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L =35miT1 + gmedy —U(r).

The symmetries imply conservation of total momentum, energy, and angular momentum:
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Diot = P1 + D2 = miT1 + maZs, H = 1 4 =2 +U(r), Lot =1 X P1 + T2 X o
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We can choose an inertial frame of reference where p;,; = 0; this is called the center
of momentum (or sometimes called center of mass) frame. This means that & = (m,Z; +
mods) /M, with M = my + ms is chosen to be a constant. The dynamical coordinate is

then just the relative position 7= r; — 5 and we can write



