140a Lecture 8, 1/31/19

* Week 4 reading: Blundell+Blundell, chapters 13, 14

e Emphasize how powerful a statement it is that something is a state variable. E.g.
dU = JQ + W = dQg + dWr, with §Wg = —pdV. Can compute AU = [ dU by
considering any path between the initial and final states, even for irreversible processes,
e.g. free expansion of an ideal gas. Also, can compute AV for any process, even irreversible,
via AV = — fif dWr/p for a reversible path with the same endpoints. Emphasizing this
because similar statements will apply to AS = [dQgr/T.

e Last time: consider an arbitrary system O undergoing an arbitrary cyclic process.
Divide into N infinitesimal steps during which the temperature is constant, 77 ... TN and
let @; be the heat absorbed by the system while at temperature T;. Now couple each step
to a tiny Carnot engines / refrigerators C;, whose heat output is chosen to be O’s input on
the i-th step. The Carnot engines output is heat (); and temperature T; and their input is
heat Qf = T.Q;/T; at temperature T, > T;. The Carnot engines have input W; = Q, — Q7.
The system O does work W = ). @Q; and the total work done by combining the system
and the attached Carnot engines is Wiptqr = Wo — >, Wi = >, QF, which is the total

heat taken from a reservoir at 7. Kelvin’s statement implies that W0 < 0:

Y Qr<o, e Z%go, ie. ]U%ng.

(2

(Actually, we can replace T' — T, here, allowing for the fact that the temperature
T of the system need not be be in equilibrium with the external surroundings.) For a

reversible cycle we can reverse to get inequality with dQ — —dQ (and Te,e = T), so

§o2m o

Note difference between d@Q/T¢,: and dQr/T.

e So dQr/T = dS is a state variable! Like —dWg/p = dV is a state variable.

e So S(B)—S(A) = ff dQr/T over any reversible path.

e Thus ff dQ/T < S(B) — S(A), with equality iff reversible.

e Entropy of thermally isolated (dQ = 0) system never decreases: Sy — S; > 0.
Comment on the arrow of time. Thermally isolated system is in state of maximum entropy,
consistent with external constraints. If not thermally isolated, ASyniverse = ASsystem +

ASsurroundings > 0, with equality iff the process is reversible.
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e E.g. heat |@Q| going from T5 to T} has AS = |Q|(T1_1 — Tz_l) is properly positive iff
T5 > T1, recovering Clausius’s statement.

E.g. heat engine: ASiotqr = ASengine + ASy + ASc > 0, with ASepgine = 0 since it
is cyclic, and ASy = —|Q2|/T> and ASc = |Q1|/T1. Gives |W| < |Q2|(1 — T3 /Ts), with
equality iff the process is reversible. Carnot’s statement.

e E.g. put C; and C; objects at 77 and T3 into thermal contact. Work out 7T and
AS. Consider limit C'y — oco. Show that AS > 0 and equal zero iff T} = T5.

e For an ideal gas, dU = CydT and pdV = NkgTdV/V so

S, =S = /if(dU +pdV)/T = Cy m%‘) + Nkg m%‘) —Cp 1n(%°) - Nkgn(2),
Recall Cp = Cy + Nkp for an ideal gas.

e E.g. gas in a container of volume V; suddenly expands to volume V5. Irre-
versible. Compute AS from any reversible path, e.g. a reversible isotherm, to get
AS = NkpIn(V2/V1). In the reversible version, this is balanced out by the entropy change
of the heat reservoir. In the irreversible process, there is no heat reservoir and process
causes ASyniverse > 0.

e E.g. two different ideal gasses in two containers, and then the partition is removed,

get

i+ V; i+ V.

1+ 2)+N2k31n( 1+ 2)
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(discuss the Gibbs paradox, will return to it later). If T} # Tb, also get

ASmiaving - leB ln(

T T
ASr, 7, = Cy mﬁ‘) +Cy, ln(?i).

Can verify that each of these contributions are positive, e.g. if Cy; = Cyo = C then
Ty = +(Th + Th).



