140a Lecture 6, 1/24/19

* Week 3 reading: Blundell4+Blundell, chapters 11, 12, 13.

e Last time: Examples of AW for ideal gas. Isothermal: AU = 0. AQ = —AW =
NEkgTIn(Vy/V;) = NkgT In(P;/Py). Isochoric AW = 0. AQ = AU = CyAT. Isobaric:
AW = —PAV = —NkgAT. AQ = CpAT = (Cy + Nkp)AT. Adiabatic: AQ = 0.
AW = AU = Oy AT = 2 A(PV).

Engine efficiency n = |W|/|Qu|. E.g. isothermal expansion of ideal gas: |W| = |Q| =
nRT In(P;/Py) has n = 1, but this is a one-shot process. Final state differs from initial.
For an engine, want cyclic process, coming back to starting state, i.e. closed loop in P/V
diagram. For complete cycle, AU = 0 (state variable). Total work of process = |W| =
area enclosed by cycle in P/V diagram. In process, some heat |Q | is taken out of some
hot working substance (e.g. boiler), and then some heat is ejected into cold area (e.g. the
smoke going out into the atmosphere). |W| = |Qu| — |Qc|, son =1 — |Qc|/|Qu| < 1.
Perfect engine would have n = 1, but this is impossible.

e Refrigerator performance: w = |Q¢c|/|W|=1/(1 —|Qc|/|Qu|). Perfect refrigerator
would have w = oo, but this is impossible.

e Early version of the 2nd law: (Clauius 1850) no device can be made that operates
in a cycle and whose SOLE effect is to transfer heat from cooler to hotter body. In other
words, no perfect refrigerators. Equivalent to Kelvin-Planck statement It is impossible to
construct a device that operates in a cycle and produces no other effect than the performance
of work and the exchange of heat with a single reservoir. In other words, no perfect engines.
Carnot (1824): there is an upper limit to the efficiency of a cyclic engine.

e Show that two statements are equivalent: with a perfect engine, could make a perfect
refrigerator; and given a perfect refrigerator could make a perfect engine.

e Nothing beats a reversible engine! Because otherwise, in combination with the
reversed engine (acting as a refrigerator) would violate Clauius’ statement. All reversible
engines have the same efficiency. n < Nmazr = Nrew. We'll compute it for the Carnot engine.

e Mention non-cyclic process, A — B. Recall AU = AQ — AW = AQr — AWp.
General result: AW < AWpg and AQ < AQpg. Illustrate with ideal gas for 2 cases:
reversible isotherm and reversible adiabat, vs. irreversible counterparts.

e Stirling engine (2 isotherms, 2 isochorics). Non-zero Qg on two sides and non-zero
Q¢ on two sides of the PV diagram.

e Work through examples of a Carnot engine (2 isotherms, 2 adiabats). Obtain n =
1—T¢ /Ty . Fill in the details: let the Ty isotherm connect points (p1, V1) to points (p2, V2)
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so p1Vi = paVah. Let the adiabat from Ty to T connect (p2, Va) to (ps, V3) so poVy =
psVy'. Let the isotherm at T connect (ps, V3) to (pa, Vi) so psVs = psVy. Finally, the
adiabat from T¢ to Ty has p4V) = p1V]'. Compute Qg = NkpTy In(V2/V1) and Q¢ =
NkpToIn(Vy/V3). Let us show that Vo/Vy = V3/V,. Note that the adiabatic equation
pV? = const can be written, using p = NkgT/V, as TV?~! =const. So THVQ’Y_1 =
TCV};Y_I and THVfY_1 = TCV?_l. Dividing these equations gives Vo/Vy = V3/Vy. So
W =Qu+Qc = |Qu| —|Qc| = Nkg(Tuy — Tc)In(V2/Vi) and n = W/Qu = (T —

Te)/Th = (1 — %) Note that we can write this as

W] Tc Qu| _ |Qc|

—1--¢ =H]

Carnot reversible engine : n = @ T, Ty~ T

We will see next time that, when we put in the correct signs, this is the statement that
the entropy change of the two reservoirs sums to zero for a reversible engine (and that of

the cyclic engine is also zero, since entropy is a state variable).



