140a Lecture 5, 1/22/19

* Week 3 reading: Blundell+Blundell, chapters 11, 12, 13.

e Last time:dU = dQ + dW, with dW,.., = —pdV. Heat capacity. Cy = (%)V and
Cp = (%) p. Note that both are extensive, and it is convenient to define the specific
heats ¢y = Cy /M and cp = Cp/M, which just depend on the material (and in general
T'), independent of the size of the sample.

e Define v = Cp/Cy. Always the case that v = Cp/Cy > 1: more heat required,
for fixed AT, in case of P = constant, because some goes into doing a positive amount
of work, whereas at constant V no work is done, so all added heat goes toward increasing
the internal energy, and thus the temperature.

e Plot ¢, and cy as a function of temperature, with 7" € [0,1000K] and e.g. ¢ €
0,30 x 103.J/kmoleK]. Classical physics dilemma: why does c¢(T" — 0) — 0?7 We'll see
why later, e.g. for small T, ¢(T)T2e~*/T with a oc h. For T large, Cyy — %NkB.

e Write U = U(T, V). Exact differential means
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dQ = dU + pdV so Cy = (9%)y and Cp = Cv + [(2%)r + p](%%),. Note that

Cp—Cy = (g—g) %)p. We will later discuss Maxwell’s relations and see that this can

be rewritten in a Wgy to show that it is always positive.

e For an ideal gas, U = %NkBT and thus Cy = gNkB and Cp = Cy + Nkp.

Note that v = 1 4+ (Nkg/Cy ). For an ideal gas, U = CyT = NkgT/(v — 1), with
vy=1+ % Emphasize that « is a macroscopic observable, it is an easily measured property
of a gas. Isn’t it amazing that it tells us something about f7?! That is a microscopic
property of molecules. In fact, this observable gave, in hindsight, amazing clues about
quantum mechanics already in the 1800s! Plots of f as a function of temperature showed
for some gasses it increasing as T increases, first f = 3, then f = 5, then f = 7. This is
as rotational and vibrational degrees of freedom were activated (which requires non-zero
energy because angular momentum and vibrational energy levels are quantized.

e Adiabatic means d@) = 0 and reversible. For an ideal gas, dU = CyT and then the
first law for an adiabatic process gives CydT = —pdV. Plug in dT" = d(pV)/Nkp to get
Cy(pdV + Vdp) = —NkpgpdV so Vdp + vpdV = 0. This integrates to pV7 = constant.
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e Adiabatic atmosphere is a better approximation than 7' =constant, which we dis-
cussed last time. Eliminate V' to write p(NkgT/p)? =constant. So (1 — ~)(dp/p) +
~(dT/T) = 0. Also % = —mgp/kpT (last time), so ‘é—z = —(VT_l)(mg/kB).

e Examples of AW for ideal gas

1. isothermal: AU =0. AQ = —AW = NkgT'In(V;/V;) = NkgT In(P;/Py).
2. isochoric: AW =0. AQ = AU = Cy AT
3. isobaric: AW = —PAV = —NkgAT. AQ = CpAT = (Cy + Nkp)AT

4. adiabatic: AQ = 0. AW = AU = CyAT = L7 A(PV).

e Engines. Efficiency n = |W|/|Qu|. E.g. isothermal expansion of ideal gas: |W| =
|Q| = nRT In(P;/Py) has n = 1, but this is a one-shot process. Final state differs from
initial.

e For an engine, want cyclic process, coming back to starting state, i.e. closed loop in
P/V diagram. For complete cycle, AU = 0 (state variable). Total work of process = |W| =
area enclosed by cycle in P/V diagram. In process, some heat |Qg| is taken out of some
hot working substance (e.g. boiler), and then some heat is ejected into cold area (e.g. the
smoke going out into the atmosphere). |W| = |Qg| — |Qcl|, so n =1 —|Q¢c|/|Qu| < 1.

Perfect engine would have = 1, but this is impossible.



