
140a Lecture 3, 1/15/19

⋆ Week 2 reading: Blundell+Blundell, chapters 5,6. Then skip to chapter 11.

• Let’s recap some highlights from last lecture. We considered two closed subsystems

in thermal contact. The macroscopic condition for them to be in thermal equilibrium is

some φA(pA, VA) = φB(pB , VB), and we can call that quantity temperature, TA = TB , with

kBT an energy. The microscopic condition for thermal equilibrium is that the total number

of configurations ΩA(EA)ΩB(E − EA) is a maximum as a function of EA, which implies

that d
dEA

lnΩA(EA) =
d

dEB
lnΩB(EB) and this should be the same as their temperatures

being equal. So, in the microcanonical ensemble description we consider a system (an

ensemble of systems) of fixed E, and then determine T via

d lnΩ(E)

dE
=

1

kBT
≡ β a key equation!

In the canonical ensemble description, we have systems in thermal contact with a heat bath,

so temperature T is that of the bath and a small system does not have a fixed ǫ but instead

has a probability distribution P (ǫ) ∝ Ω(E − ǫ) × 1, associated with the number of states

of the heat bath (the ×1 is because the system itself is small, without inner possibilities,

so we assume for the moment that it has non-degenerate states – this can, and should, be

modified as appropriate). By a Taylor series in small ǫ find Ω(E − ǫ) ≈ Ω(E)e−βǫ, so

P (ǫ) = Z−1e−βǫ, where Z(β) ≡
∑

ǫ

e−βǫ.

Z(β) is the partition function, a key quantity in statistical mechanics.

• Maxwell-Boltzmann distribution. For a dilute gas, we can ignore interactions and

each molecule has ǫ = 1

2
m~v2 if it’s monatomic (additional, rotational energy if it’s not

monatomic, will mention more about that shortly). How dilute is typical? N/V ∼ 6 ×
1026/22m3 ∼ 3 × 1025m−3, so (V/N)1/3 ∼ 10−8m which is much larger than the size of

a molecule. The MB distribution is P (~v)d3~v with P (~v) ∝ e−β
1

2
m~v2

. The P (~v) is of the

form above for P (ǫ), with ǫ = 1

2
m~v2 the kinetic energy. The d3~v can be understood as

coming from d3~rd3~p phase space volume. A motivation for this is Liouville’s theorem: by

Hamilton’s equations, classical systems move through phase space like an incompressible

fluid. In QM, the uncertainty principle makes phase space into discrete pixels, so can get

sums over phase space instead of integrals, which is kind of nice.

Note that P (~v) = p(vx)p(vy)p(vz), where each is a Gaussian normal distribution. The

fact that it’s a product makes sense: the three components are decoupled, so the probability
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for some ~p should be the product of that for the separate components – probabilities of

decoupled and statements multiply. Also, the fact that it depends only on the scalar ~v2

makes sense, by rotational invariance; these two requirements are pretty much sufficient to

determine the Gaussian form. If we just consider p(vx), find 〈vx〉 = 0 and 〈v2x〉 = kBT/m,

so increasing temperature increases the standard deviation. For the speed distribution,

integrate d3~v in spherical coordinates to get 4πv2dv and then P (v)dv = Cv2e−mv2/2kBT ,

where C = (4/
√
π)(m/2kBT )

3/2. Find 〈v2〉 = 3kBT/m, so vRMS ≈
√

3kBT/m. For air

we get m ≈ 30mproton ≈ 30GeV/c2 ≈ 30× 10−3kg/6.02× 1023. Get vRMS ≈ 500m/s.

Note that 〈 1
2
mv2〉 = 3

2
kBT . This is an example of the classical equipartition theorem,

that each d.o.f. has average energy 1

2
kBT . The average total internal energy of a gas of

N non-interacting, monatomic atoms, in thermal contact with a heat bath at temperature

T , is then U = 3

2
NkBT . For diatomic or polyatomic molecules, again approximately

non-interacting, we have instead U = f
2
NkBT , where f is the number of translation or

rotational degrees of freedom of each molecule. It is interesting that dU/dT is a macroscopic

observable, which can be measured for different gasses, and which reveals the value of f

which has something to do with the individual molecules.

• Pressure with MB velocity distribution: suppose a wall is at z = 0, with z > 0

inside the container. The particles with vz < 0 will hit the wall. The number of particles

hitting the wall area A in time dt is (N/V )A|vz|dt. Each such particle reflects off the wall,

imparting impulse 2m|vz|. The pressure on the wall is thus

p =
N

V
2m

∫

vz>0

d3~vP (~v)v2z =
N

V
m〈v2z〉 =

N

3V
m〈~v2〉 = N

V
kBT.

This gives the ideal gas law, pV = NkBT. Show how the 1/3 factor also comes from

averaging cos2 θ in spherical coordinates.

• For fun: estimate the number N/V = patm/kBT of air molecules in a cubic meter

of volume at STP, and their mass. Recall patm ≈ 105Pa.
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