140a Lecture 18, 3/12/19

* Week 10 reading: Blundell4+-Blundell, chapters 23, 24, 25, 28.1, 28.2, 28.3.

e Continue where we left off last time, considering a thermal collection of photons in a
box. We saw that the wave counting gives 2V d3k/(27)3 (where the 2 is for polarizations)
and w = ck, photons have energy £ = hw and p = hk, with w = ck. The energy
density of a gas of photons of frequency w is u = U/V = nhw where n = N/V is the
photon density. The pressure of a gas of photons is p = u/3. The number of photons
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hitting a unit area of the container wall per second is ® = znc and thus the power

incident on the wall per unit area is P = hw® = iuc. The thermodynamic relations
(BU/OV)r = T(8S/0V)r —p = T(9p/dT)v — p becomes u = +(T(du/0T)y — u) which
leads to 4dT/T = du/u and thus P = iuc = oT*. Let’s now show how to get this, and
derive the value of the Stefan-Boltzmann constant o.

Each Fourier mode of the light in the box is like a SHO, and there is a factor of two
from the two polarizations. As we discussed earlier, the number of modes in a box of

volume V is V(fT’%. The total internal energy is then
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U= 2V/ (gﬁl‘;g hek(5 + em,,wl_ )= 4‘ZUT4 with o= =5

The % is the vacuum energy of the SHO, which we won’t worry about here (mention
briefly the cosmological constant). The blackbody distribution u(w) = hw?/m2c (e —1)
reproduces the classical equipartition theorem answer for fhw < 1, and the exponential
in the denominator cures the ultraviolet catastrophe of the classical equipartition theorem
for large w: recall from your QM classes that this was how Planck first introduced A and
he wrote down the answer for u(w) by fitting, without understanding that light comes in
quantized photons. That understanding came later, from Einstein who first wrote down
FE = hw to explain both this and especially the photoelectric effect.

The cosmic microwave background radiation is the afterglow from the early universe,
and is a blackbody spectrum with temperature 7' &~ 3K (with tiny temperature anisotropies
measured in different parts of the sky by cosmology experiments).

e The above description was in terms of the canonical ensemble for the SHO energy
levels. Alternatively and equivalently, we can get it from the grand canonical ensemble for
occupation number n of the energy F = hw. We saw before that identical bosons in this
description have (n) = (e#(F=#) —1)~1 and this matches the above if we set 1 = 0. In terms

of the microcanonical ensemble, we saw that u is related to the Lagrange multiplier that
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enforces the particle number conservation law ) . n; = N, but there is no such constraint
on the number of photons, which is why we can set © = 0. Recall that G = F+pV = ulN, so
p=0gives F = —pV = —kpTInZ = —kpT2V (47)(27h) 3 fooo p?dpln(l — e—eP/kBT) =
—U/3 where p?dp = d(p3/3) was integrated by parts to get the same integral for U as
above. This gives yet another way to see the 1/3 factor that was obtained in several ways
last lecture. Also, S = (U — F)/T = 3(U/T) < VT? and Cy = T(32)y = 35.

e Continue along these lines for relativistic gases. E = /c2p? + (mc?)2. In the

ultrarelativistic limit, F =~ ¢p. The single particle partition function is then

By V. kpT .. [™ V kpT
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Recall that in the non-relativistic case we found Z; o« VT3/2. Write Z, = V/A3 in the
relativistic case, with A ~ 1/T.

For low-density the partition function for NV indistinguishable relativistic particles is
Zn = ZY/N!and thus InZy ~ NInV +3NInT + const. So U = —5InZ = 3NkgT
(vs %NkBT in the non-relativistic case) and Cy = 3Nkp and F = —kgTInZy gives
p=—(25)r = NkpgT/V (same ideal gas law). So we again get p = u/3 with u = U/V.
Find the entropy S = (U —T)/T = Nkp(4 — In(nA3)).



