
140a Lecture 17, 3/7/19

⋆ Week 9 reading: Blundell+Blundell, chapters 29, 23, 24

• Continue where we left off last time: consider e.g. a 1-state system, where the one

state has energy E. Consider the grand partition function Z =
∑

n enβ(µ−E), where n is

the occupation number. Then 〈n〉 = −kBT∂ lnZ/∂E.

For Fermions, the only allowed values in
∑

n are n = 0, 1, so Zfermions = 1+eβ(µ−E).

For bosons we sum the geometric series over all n = 0, . . .∞ to get Zbosons = (1 −

e−β(µ−E))−1. Both can be written as giving lnZF,B = ± ln(1 ± eβ(µ−E)). Get 〈n〉 =

(eβ(E−µ)±1)−1. The distribution function is the mean occupation of a single particle state

with energy E and is given by fFD(E) = (eβ(E−µ) +1)−1 and fBE(E) = (eβ(E−µ) − 1)−1.

For β(E − µ) ≫ 1, the occupation number is dilute and the statistics become unim-

portant: both distributions approach the Boltzmann distribution e−β(E−µ). This is called

the classical limit.

For Fermions in the limit where βµ ≫ 1, note that for fFD ≈ Θ(µ − E) where Θ(x)

is a step function, i.e. Fermions occupying up to E ≤ µ, filling up to the Fermi surface.

For bosons get fBE → ∞ as E → µ (Bose condensation).

For a system with energy levels Ei and occupation numbers ni, and degeneracy gi the

grand partition function is Z =
∏

i

∑

{ni}
eniβ(µ−Ei). For Fermions (+) and Bosons (-)

get lnZ = ±
∑

i ln(1± eβ(µ−Ei)) and then 〈ni〉 = − 1
β
∂ lnZ/∂Ei = (eβ(Ei−µ) ± 1)−1.

We previously discussed the microcanonical description S(U,N, ...) = k lnΩ(U,N, ...) ≈

k lnωmax where Ω(U,N) =
∑

{ni}

′

ω({ni}), with ω({ni})B.E. =
∏

i
(ni+gi−1)!
ni!(gi−1)! and

ω({ni})F.D. =
∏

i
gi!

ni!(gi−ni)!
. In the HW exercise you used these to compute S and max-

imize in the ni to connect to the above expressions from the microcanonical description

(enforce the constraints N =
∑

i ni and U =
∑

i niEi being held fixed via Lagrange mul-

tipliers α and β, then solve for them in terms of T and µ).

• Next topic: a thermal collection of photons in a box = blackbody spectrum. Clas-

sically, we consider electromagnetic waves and compute the energy momentum tensor to

find the energy and radiation pressure on the walls. The solutions of the wave equation

in the box, subject to say conducting boundary conditions at the wall, lead to Fourier

mode numbers 2V d3~k/(2π)3 (where the 2 is for polarizations) and ω = ck. Integrating

over solid angle, get g(ω)dω = V (4π)ω2dω/(2πc)3. The classical equipartition theorem

suggests that each frequency ω has energy kBT (like a SHO, with one kinetic and one

vibrational restoring d.o.f.). This leads to a clearly wrong answer for high ω modes. It led
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Planck to introduce h̄, to guess the answer before anyone understood QM and what his

fix really meant.

Now consider it in QM, where the light is replaced with photons (=quanta of a quan-

tum photon field). Recall that photons have energy E = h̄ω and ~p = h̄k, with ω = ck.

The energy density of a gas of photons of frequency ω is u = U/V = nh̄ω where n = N/V

is the photon density. The pressure of a gas of photons is found from the impulse ∆p⊥

times the flux, which for photons gives p = u/3, with the 1/3 from averaging cos θ over

the half of the solid angle that is hitting the wall. We got this in lecture 3 for massive

particles and it is similar here, with p = N
V 〈pzvz〉 =

N
3V 〈~p ·~v〉. For the non-relativistic case

we have E = 1
2
~p ·~v, whereas for photons E = ~p ·~v, so we get p = u/3 for photons. Another

way to obtain this is from p =
∑

i
1

eβǫi−1
(−∂ǫi

∂V ) with ǫi = h̄c(2π/V 1/3)
√

n2
x + n2

y + n2
z so

∂ǫi/∂V = −1
3ǫi/V , giving p = u/3. Also note that p = u/3 fits with the energy momentum

tensor being traceless which is the case for scale invariant theories (fitting with photons

being massless).

The number of photons hitting a unit area of the container wall per second is Φ = 1
4
nc

and thus the power incident on the wall per unit area is P = h̄ωΦ = 1
4uc.

The thermodynamic relations (∂U/∂V )T = T (∂S/∂V )T−p = T (∂p/∂T )V −p becomes

u = 1
3
(T (∂u/∂T )V − u) which leads to 4dT/T = du/u and thus P = 1

4
uc = σT 4. Let’s

now show how to get this, and derive the value of the Stefan-Boltzmann constant σ.
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