
140a Lecture 11, 2/14/19 ♥

⋆ Week 6 reading: Blundell+Blundell, chapters 16, 18, 19

• Last time: suppose that a system has initial energy U0, and goes via some process

to having energy U(S, V ). The system has P , T , and V , and the exterior surroundings to

the system has pressure P0 and temperature T0. What is the work done? It depends on

the process. We get

dUsys = −/dWmech − P0dVsys + /dQsys,

where we wrote the work done by the system as mechanical work (pushing a piston) plus

the work done in expanding against the external pressure P0. Moreover,

/dQsys = −/dQsurr = −T0dSsurr.

Using dSuniverse = dSsys + dSsurr ≥ 0, we get −dSsurr ≤ dSsys, and thus

/dWmech = −dUsys − P0dVsys + T0dSsurr ≤ −d(U − T0S + P0V )sys.

Let’s write this again, in terms of the availability

A(S, V ) ≡ U − T0S + P0V,

|/dW |max = −d(U − T0S + P0V ) ≡ −dA.

If in equilibrium, we can use dU = TdS − PdV to write

/dWmech ≤ − ((T − T0)dS − (P − P0)dV ) .

Let’s interpret the two terms. The first term is the maximum work a Carnot engine would

do, operating between TH = T and TC = T0: if everything were reversible, the heat leaving

our system would be QH = −TdS, and that heat drives the Carnot engine, producing work

/dWcarnot = −(T − T0)dS. The second term is the mechanical work, subtracting out the

work done against the environment.

More generally, /dWmech = PdV + Edq + ~B · d ~M + ~E · dP + µdn+ . . . ≤ −dA applies

to all types of work, not just PdV work.

Example: two identical blocks, with initial temperatures T1,i and T2,i. What is the

maximum work that can be extracted? Solution: hook them up to a Carnot engine.

Maximum work when everything is reversible. This means that the total entropy of the

combined system of blocks, plus engine, should be constant. Since ∆Sengine = 0, this
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means ∆Stotal = ∆S1 + ∆S2 should be zero. Implies that T1T2 must be constant. Im-

plies that T1,f = T2,f =
√

T1,iT2,i. The above formula, with S and V constant, implies

∆Wmax = −∆U = −(∆U1 +∆U2) = −C(2
√

T1,iT2,1 − T1,i − T2,i) > 0.

This illustrates a general kind of question that often comes up in thermodynamics. We

start of being limited to consider equilibrium situations, because non-equilibrium processes

are hard. But then broaden scope by consider bringing together two equilibrium subsys-

tems, and study how the combined system reaches equilibrium. In general this happens

such that

dA ≤ 0, with dA = 0 when equilibrium is restored.

The above example had S constant and V constant, and so we get dU ≤ 0, with dU = 0

at equilibrium. In other words, for fixed S and V , the process reaches equilibrium when

U is minimized.

We can instead impose U = U1+U2 fixed, with V = V1+V2 fixed, and then equilibrium

is reached when S = S1 + S2 is maximized.

• Connect to interpretation of other thermodynamic potentials, H = U + PV , and

F = U − ST , and G = U + PV − ST . Suppose ∆S = 0 and P = P0, then we get

∆Wmech ≤ −∆H. Or if T = T0 and ∆V = 0, then ∆Wmech ≤ −∆F . Or if T = T0 and

P = P0, then ∆Wmech ≤ −∆G. Now Suppose no mechanical work, /dWmech = 0. Again,

dA ≤ 0. Processes occurring in the system tend to decrease A. It reaches its minimum

at equilibrium. For fixed P0 = P and T0 = T , the process reaches equilibrium when G

is a minimum. Likewise, for fixed T and V , the process reaches equilibrium when F is a

minimum. Likewise, for fixed S and P , it reaches equilibrium when H is a minimum. For

fixed S and V , the process reaches equilibrium when U is minimized. Equivalently, for

fixed U and V , the process reaches equilibrium when S is maximized.

• Let’s show in more detail that A decreases until it reaches its minimum, when the

system is in equilibrium. Note that A is extremized if T = T0 and P = P0:

∂A

∂S
=

∂A

∂V
= 0 for T = T0 and P = P0.

To show that this extremum is a minimum of A, note that, expanding near T = T0 and

P = P0, and using T − T0 = (∂A/∂S)V and P − P0 = −(∂A/∂V )S, we get

A = A0 +
1
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We see that A > A0 provided that
(

∂T

∂S

)

V

> 0 which is equivalent to CV > 0,

(

∂P

∂V

)

S

< 0 which is equivalent to κS ≡ −

(

∂ lnV

∂p

)

S

> 0,

and

(

∂T

∂V

)2

S

< −

(

∂T

∂S

)

V

(

∂P

∂V

)

S

.

Here κS is the coefficient of adiabatic compressibility.

• Third “law” of thermodynamics. Recall S(T ) = S(T0)+
∫ T

T0

CdT/T . The statement

is that it is almost always the case that S(T → 0) → 0 (Planck) or S′(T → 0) → 0

(Nernst). In theories with non-degenerate groundstates (which is almost always the case),

Ω(E → 0) → 1, and then S = kB lnΩ → 0. Counterexamples to the 3rd law arise if

S(T → 0) = S0 6= 0, which can happen if the groundstate is degenerate. Today!: special

colloquium at 4pm by Prof. Sachdev (Harvard) on Strange Metals and Black

Holes, might mention some examples where S(0) 6= 0, e.g. charged black holes.

A consequence of assuming S(0) = 0 is that C(T → 0) → 0; if C(0) 6= 0, there would be

a problem as T → 0 in
∫

dT/T = lnT → −∞. Also (∂S/∂p)T → 0 which, by a Maxwell

relation, implies (∂ lnV/∂T )p → 0. The third ”law” implies that gasses cannot be ideal at

T → 0. Draw two curves in a (T, S) diagram, with S(T → 0) → 0 for both, and picture

the infinite number of steps needed to cool to T → 0.

• Equipartition of energy. Recall the viral theorem from classical mechanics: if

V (α~ri) = αkV (~ri), then 2〈KE〉 = k〈V 〉 where here the average is over a cycle. For

a SHO, k = 2 and this gives 〈KE〉 = 〈V 〉. Indeed, from x = A cos(ωt + φ) we see

〈KE〉 = 〈V 〉 = 1

2
E. The SHO is ubiquitous in Nature because any restoring potential can

be Taylor expanded for small oscillations around equilibrium and then looks approximately

like a SHO. We saw with the Maxwell velocity distribution that, in thermal equilibrium at

temperature T , 〈 1
2
m~v2〉 = 3

2
kBT . Similarly, for a SHO we can have P (x) = Ce−βαx2

which

gives 〈αx2〉 = 1

2
kBT (note it is independent of the spring constant α, just as the average

KE is independent of m). Similar consideration applies to rotational degrees of freedom.

The upshot is 〈E〉 = f
2
kBT where f is every degree of freedom: 3 for translations, plus any

applicable vibrations, rotations. This is called the equipartition theorem. As we already

discussed, for an ideal gas this gives U = f
2
NkBT so CV = f

2
NkB and CP = ( f

2
+1)NkBT

so γ = 1 + (2/f). The equipartition theorem necessarily breaks down, e.g. applying it

naively leads to the UV catastrophe in the blackbody spectrum, which led to Planck’s

introduction of his constant to fix the problem, giving the birth of QM. We will discuss

this more later.
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