
140a Lecture 10, 2/7/19

⋆ Week 5 reading: Blundell+Blundell, chapters 14, 15, 16

• dU = TdS − pdV . As we discussed last time, this gives

T = (
∂U

∂S
)V , p = −(

∂U

∂V
)S

Using the fact that partial derivatives commute, this leads to

(
∂T

∂V
)S = −(

∂p

∂S
)V =

∂2U

∂S∂V

This is an example of a Maxwell relation. It can also be related to the statement that the

Jacobian from the pV diagram to the TS diagram has unit Jacobian determinant, which

is why we can compute the work from the area in either diagram

dTdS =
∂(T, S)

∂(p, V )
dpdV = dpdV,

∂(T, S)

∂(p, V )
= 1.

This is because ( ∂T
∂V

)S = ∂(T, S)/∂(V, S) = ∂(p, V )/∂(V, S) = −(∂p/∂S)V .

• U(T, S) is nice if T and S are given. We can exchange conjugate variables S ↔ T and

p ↔ V by modifying U , adding pV or subtracting TS. Consider the enthalpy H = U +pV

and note that dH = dU + pdV + V dp = TdS + V dp, so we get

T = (
∂H

∂S
)p, V = (

∂H

∂p
)S .

The math of going from U(S, V ) to H(U, p) is called a Legendre transform and is similar

to what you know from classical mechanics with L(x, v) vs H(x, p) = pv − L with p =

(∂L/∂v)x and v = (∂H/∂p)x.

Exercise: write down the Maxwell relation associated with ∂2H/∂S∂p.

• Helmholtz free energy F = U − TS has dF = −SdT − pdV so F = F (T, V ) with

S = −(
∂F

∂T
)V , p = −(

∂F

∂V
)T .

Exercise: write down the Maxwell relation associated with ∂2F/∂V ∂T .

• Gibbs function G = H − TS has dG = −SdT + V dp so G = G(T, p) with

S = −(
∂G

∂T
)p, V = (

∂G

∂p
)T .

Exercise: write down the Maxwell relation associated with ∂2G/∂T∂p.
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• Suppose that a system has initial energy U0, and goes via some process to having

energy U(S, V ). The system has P , T , and V , and the exterior surroundings to the system

has pressure P0 and temperature T0. What is the work done? It depends on the process.

We get

dUsys = −/dWmech − P0dVsys + /dQsys,

where we wrote the work done by the system as mechanical work (pushing a piston) plus

the work done in expanding against the external pressure P0. Moreover,

/dQsys = −/dQsurr = −T0dSsurr.

Using dSuniverse = dSsys + dSsurr ≥ 0, we get −dSsurr ≤ dSsys, and thus

/dWmech = −dUsys − P0dVsys + T0dSsurr ≤ −d(U − T0S + P0V )sys.

Let’s write this again, in terms of the availability

A(S, V ) ≡ U − T0S + P0V,

|/dW |max = −d(U − T0S + P0V ) ≡ −dA.

If in equilibrium, we can use dU = TdS − PdV to write

/dWmech ≤ − ((T − T0)dS − (P − P0)dV ) .

Let’s interpret the two terms. The first term is the maximum work a Carnot engine would

do, operating between TH = T and TC = T0: if everything were reversible, the heat leaving

our system would be QH = −TdS, and that heat drives the Carnot engine, producing work

/dWcarnot = −(T − T0)dS. The second term is the mechanical work, subtracting out the

work done against the environment.

More generally, /dWmech = PdV + Edq + ~B · d ~M + ~E · dP + µdn+ . . . ≤ −dA applies

to all types of work, not just PdV work.

• Example: two identical blocks, with initial temperatures T1,i and T2,i. What is

the maximum work that can be extracted? Solution: hook them up to a Carnot engine.

Maximum work when everything is reversible. This means that the total entropy of the

combined system of blocks, plus engine, should be constant. Since ∆Sengine = 0, this
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means ∆Stotal = ∆S1 + ∆S2 should be zero. Implies that T1T2 must be constant. Im-

plies that T1,f = T2,f =
√

T1,iT2,i. The above formula, with S and V constant, implies

∆Wmax = −∆U = −(∆U1 +∆U2) = −C(2
√

T1,iT2,i − T1,i − T2,i) > 0.

• This illustrates a general kind of question that often comes up in thermodynam-

ics. We start of being limited to consider equilibrium situations, because non-equilibrium

processes are hard. But then broaden scope by consider bringing together two equilib-

rium subsystems, and study how the combined system reaches equilibrium. In general this

happens such that

dA ≤ 0, with dA = 0 when equilibrium is restored.

The above example had S constant and V constant, and so we get dU ≤ 0, with dU = 0

at equilibrium. In other words, for fixed S and V , the process reaches equilibrium when

U is minimized.
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