
Physics 212b, Ken Intriligator lecture 2, Jan 10, 2018

• Lightening review of WKB (Wentzel, Kramers, Brillouin) (will cover it in more detail

if it was not already seen last quarter). For high momentum, ψE(x)’s wiggles are smaller

than V (x)’s wiggles, so can approximate solutions via V (x) ≈ constant and then add

successive corrections. Write the time-indep SE in terms of k(x) =
√

2m(E − V (x))/h̄2

or k(x) ≡ −i
√

2m(V (x)−E)/h̄2 in E < V and E > V regions respectively, so

ψ′′

E + k(x)2ψE(x) = 0.

Take ψE(x) ≡ eiW (x)/h̄ to get 2
3
|z|3/2 = h̄−1

∫ x
dx′

√

2m(E − V (x′).

ih̄W ′′ − (W ′)2 + h̄2k2 = 0.

So for h̄|W ′′|2 ≪ |W ′|2 we end up with W ′

0(x) = ±h̄k(x). Define W (x) =
∑

∞

n=0 h̄
nWn(x)

and plug back in to get an iterative equation for Wn+1 in terms of Wn. In particular,

W ′

0 +W ′

1 = ±
√

h̄2k(x)2 + ih̄W ′′

0 where expanding the square-root and integrating gives

ψE ≈ ei(W0+h̄W1)/h̄) ≈ |k(x)|−1/2 exp[±i
∫ x

dx′k(x′)].

Note that |ψE |2 ≈ |k(x)|−1 ∼ 1/v(x), which agrees with what one might call the classical

likelihood of finding a particle with velocity v in some region dx, since dx/v = dt is the

time that it spends in that region.

• We have to patch together these solutions across the values of x where E = V ; in

those vicinities can approximate in terms of the linear potential, with the Airy function.

Suppose that there are classical turning points at x = x1 and x = x2, so the classical

motion is for x1 ≤ x ≤ x2, which is called region II. Regions I and III are the classically

forbidden regions x < x1 and x > x2. Match the WKB solution in region II to the asymp-

totic behavior of the Airy function at the turning point, where V is approximately linear:

Ai(z) → z−1/4(2
√
π)−1e−2z3/2/3 for z → ∞ and Ai(z) → |z|−1/4π−1/2 cos(2/3|z|3/2−π/4)

for z → −∞. Match the z → ∞ behavior to ψI,III to get

ψE,I→II → 2(E − V (x))−1/4 cos

(

h̄−1

∫ x

x1

dx′
√

2m(E − V (x′))− π/4

)

,

ψE,III→II → 2(E − V (x))−1/4 cos

(

−h̄−1

∫ x2

x

dx′
√

2m(E − V (x′)) + π/4

)

,
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and the two must agree. So the argument of the cos must differ by nπ. The up-

shot is that, if x1 and x2 are two classical turning points, these approximations lead

to
∫ x2

x1

dx
√

2m[E − V (x)] = (n + 1
2
)πh̄, like the Born Sommerfield Wilson quantization

∮

pdq = 2πnh̄. Note that for e.g. the SHO the classical solution is x = A cos(ωt + φ),

p = mẋ = −mωA sin(ωt + φ),
∮

pdq =
∫ 2π/ω

0
A2mω2 sin2(ωt + φ)dt = πmωA2 = 2πE/ω,

so the WKB quantization rule gives En = (n + 1
2)h̄ω, so in this case it gives the exact

result. More generally, it gives a good approximation for En when n≫ 1.

• Also, tunneling through a barrier: probability ∼ e
−2

∫

x2

x1

√
2m(Veff (x)−E)dx/h̄

, where

x here could also denote the radial direction of a 3d system.

• Now connect to the path integral, using

ψ(x, t) =

∫

dx′K(x, t; x′, t′)ψ(x′, t′),

and the saddle point approximation of the path integral gives

K(x, t; x′, t′) ≈ AeiScl/h̄ = Ae−iE(t−t′)/h̄ exp(
i

h̄

∫ t

t′
dt2T ) = Ae−iE(t−t′)/h̄ exp(

i

h̄

∫ x

x′

p(x)dx).

where we used L = T − V = 2T − E, and we can take E out of the integral since

it is conserved. The |p|−1/2 prefactor in the WKB wavefunction comes from doing the

Gaussian integral for quadratic functions in the Tayler expansion of S around the saddle

point extremum, i.e. around the classical path. So we find that the approximate K is

consistent with ψE ≈ e
i
h̄

∫

x
pdx: the x′ dependence cancels (the

∫

dx′ is damped by the

exponential falloff of ψE(x) so really
∫

dx′ → const, that is absorbed into A.)
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