Physics 212b, Ken Intriligator lecture 2, Jan 10, 2018
e Lightening review of WKB (Wentzel, Kramers, Brillouin) (will cover it in more detail
if it was not already seen last quarter). For high momentum, ¥ g(x)’s wiggles are smaller

than V(z)’s wiggles, so can approximate solutions via V(z) & constant and then add

successive corrections. Write the time-indep SE in terms of k(z) = \/2m(E —V(z))/h*

or k(x) = —i\/Qm(V(x) — E)/h?in E <V and E > V regions respectively, so

b+ k(z)*YE(z) = 0.

Take g (z) = W@/ to get §|z|3/2 =hn7" [Tdx'\/2m(E - V(o).
ihW" — (W')? + h*k? = 0.

So for h|W"|? < |W’|* we end up with W((z) = +hk(z). Define W (z) = > 2  h" W, (z)

and plug back in to get an iterative equation for W, i in terms of W,,. In particular,

Wi+ W, = :t\/ h?k(x)2 4 ihW§ where expanding the square-root and integrating gives
Vi ~ fWothWO/R) o | ()| 71/2 exp[j:i/ dx'k(z")].

Note that |¢g|? ~ |k(x)|~! ~ 1/v(zx), which agrees with what one might call the classical
likelihood of finding a particle with velocity v in some region dz, since dx/v = dt is the
time that it spends in that region.

e We have to patch together these solutions across the values of x where £ = V; in
those vicinities can approximate in terms of the linear potential, with the Airy function.
Suppose that there are classical turning points at * = z; and x = x5, so the classical
motion is for z; < x < x9, which is called region II. Regions I and III are the classically
forbidden regions = < x; and = > x5. Match the WKB solution in region II to the asymp-
totic behavior of the Airy function at the turning point, where V is approximately linear:
Ai(z) — 2_1/4(2ﬁ)_1e_223/2/3 for z — oo and Ai(z) — |z| V472 cos(2/3|2]3/% — 1 /4)

for z = —oo. Match the z — oo behavior to ¥ 171 to get

Ve — 2(E —V(z) Y4 cos (h_l /m da'\/2m(E -V (z')) — 7r/4) :

1

Vs it — 2(E — V(z))" Y4 cos (—h_l /x I (E = V) + w/4) ,

1



and the two must agree. So the argument of the cos must differ by nw. The up-
shot is that, if x; and x, are two classical turning points, these approximations lead
to f;f dz\/2m[E — V(z)] = (n + 3)7h, like the Born Sommerfield Wilson quantization
§ pdg = 27nh. Note that for e.g. the SHO the classical solution is z = A cos(wt + ¢),
p =mi = —mwAsin(wt + ¢), ¢ pdg = OQW/W A?mw? sin?(wt + ¢)dt = mmwA? = 21E w,

so the WKB quantization rule gives E,, = (n + %)hw, so in this case it gives the exact

result. More generally, it gives a good approximation for F,, when n > 1.

zf:f V2m (Vg (z)—E)dz/h

x here could also denote the radial direction of a 3d system.

e Also, tunneling through a barrier: probability ~ e , where

e Now connect to the path integral, using

P(x,t) = /das'K(as,t;x',t')d)(x’,t'),

and the saddle point approximation of the path integral gives

x

. t .
K(z, t;2',t') ~ AeiSet/l = pe1E(E—t)/n exp(%/ dt2T) = Ae " EE=t)/h exp(%/ p(x)dz).
t’ x!
where we used L = T —V = 2T — E, and we can take E out of the integral since
it is conserved. The |p|~!/? prefactor in the WKB wavefunction comes from doing the
Gaussian integral for quadratic functions in the Tayler expansion of S around the saddle
point extremum, i.e. around the classical path. So we find that the approximate K is

* pda

consistent with g ~ er J : the 2’ dependence cancels (the [dz’ is damped by the

exponential falloff of Y g (x) so really [da’ — const, that is absorbed into A.)



