Physics 212b, Ken Intriligator lecture 12, Feb 26, 2018
e Last times: time independent, a.k.a. stationary state perturbation theory, continued
H = Hy+ H;y, with Hy ~ €” and H; ~ €', and that we can do an expansion order-by-order

in the small parameter, making corrections to the Hy case. Recall E,, 1 = (E, 0|H1|En0)

and
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where the last condition is by a choice of overall phase. So
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where Em/ means all states with E,, o # E, 0 and P,; =1 — |E},0)(En0|- Note that
|Epn.1) = |n1) is not an eigenstate of either Hy or Hy; it is the order e correction to the

eigenstate of H. To second order
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Note that this is always negative for the ground state. To the above order we have the

expected result
E, = (n|H|n) = ({(no| + (n1| +...)(Ho + H1)(|no) + |n1) + .. .).

(n|n) = (ng|ng) = 1 gives (ng|nz2) + (n2|ng) + (n1|n1) = 0, so (na|Ho|ng) + (no|Ho|nz) +
(n1|H0|n1) = (n1|H0 — En,0|n1> = —En,g, so to O(€2> get 2En72 — En’Q = En,g.
e Wave function renormalization: |n) = |ng) + |n1) + ... has (njn) = Z;1 =1+

n

(ni|n1) + ..., gives

| (mo|H1|no)|?
Z =1-—
Z (En,O - Eﬁm,())2 +

The renormalized state is |) = Z'/2|n). Note that Z, = |(ng|n)|? is the probability of
finding the H eigenstate |n) in the unperturbed Hy eigenstate |ng); so clearly Z,, < 1, as

is clear also from the above. A general identity is
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The fact that Z,, < 1 for the ground state fits then with the fact that the second order

perturbation is negative.



e Stark effect: put an atom in an external electric field, treating e as a perturbation.
Take Hy = eFEyz for an electric field along the 2z axis (the electron charge here is —e). Then
E, 1 =eEy(E, 0|z|E, ), which is zero by parity symmetry if the state is non-degenerate

(e.g. in the ground state of the hydrogen atom). To second order,
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It follows from the Wigner-Eckart theorem that (n', £', m'|z|n, £,m) o< 6,/ m&(r—g)21.. The
second order shift can be understood as polarizing the system, and the change in energy
is —2aE? (yowll check this in HW examples).

For degenerate states, there is generally an effect already at first order; we need to
use degenerate perturbation theory.

e Degenerate perturbation theory: especially interesting case, where H;p splits the
degenerate spectrum of Hy. Suppose the Hj eigenstates are |ng ), where k runs over
the degenerate space of Hj eigenvectors with eigenvalue E, o, say k = 1...K. Now
H{’s matrix elements on this space of states is a K x K matrix. If we naively apply the

above expressions, we run into problems with the denominator of e.g. (E,4n0/En1) =

1
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H; matrix elements on this space, so we get 0/0 instead of 1/0. Also, diagonalizing H;

(Emzn,0/H1|En o) in the degenerate subspace. The solution is to diagonalize the

in the degenerate space is needed for a smooth ¢ — 0 limit, since for any ¢ — 0" the
states are not eigenstates unless they diagonalize H;. The eigenvalues of the H; matrix
are the first order correction E,, 1 j values. The expression for |n,1) is similar to that in
the non-degenerate case, where the Z;n is understood to be over states with E,, o # E,, o,
i.e. excluding all of the states with energy E, o.

If some degeneracy remains at first order, one needs to diagonalize the matrix V,,/ ,, +
Yo /Vnmvmn’/(En,O — B 0) where we take H; — V to reduce index clutter.

e Stark effect for n = 2 states continued, if the state is e.g. initially in the |25)
state, to first order in the small E perturbation the energy is —(€?/2ap) (5 £ 6Eo/(e/a?))
with equal probability for the two cases. Note that e?/ag = 5.15 x 109V/em so the E
just has to be small compared with that huge value for perturbation theory to be a good
approximation.

Stark effect for n = 2 states. H;j is a 4 X 4 matrix, with non-zero element A =
(200|eEz|210) = —3eFEag and its transpose (Hermitian conjugate). This is diagonalized
by (|200) + |210))/v/2, with eigenvalue £A, along with |21 4= 1) with eigenvalue 0. The

split energy eigenstates are not parity eigenstates.



