
Physics 212b, Ken Intriligator lecture 1, Jan 8, 2018

• Briefly recap the usual description of QM: observables are replaced with operators,

with classical Poisson brackets replaced with commutators, in particular [q̂a, p̂b] = ih̄δab.

The operators act in some Hilbert space H, and the state of the system is a vector |ψ〉 ∈

H. Measuring an observable O magically (one can say better words) projects |ψ〉 on to

an eigenstate |o〉 of Ô with probability amplitude 〈o|ψ〉, and probability |〈o|ψ〉|2. More

generally, we can compute correlation functions and expectation values, getting amplitudes

like M = 〈χ|
∏

j Ôj |ψ〉, and then probability via |M|2. Probability amplitudes of different

options, like going through one slit or another, add, so squaring to get probabilities leads to

interference effects. Time evolution is generated by a unitary operator U(t, t0) that satisfies

ih̄∂tU(t, t0) = HU(t, t0); for time independent H, integrating gives U(t, t0) = e−iĤ(t−t0)/h̄;

more generally, U(t, t0) = T exp(−i
∫ t

t0
Ĥdt/h̄). Likewise, spatial translation is generated

by U(~a) = e−i~a· ~̂P/h̄, which acts as U(~a)|~x〉 = |~x+ ~a〉 and rotation is generated by U(~φ) =

e−i~φ· ~̂J/h̄. In Schrodinger’s picture we put the time dependence in the states, ih̄∂t|ψ(t)〉S =

Ĥ|ψ(t)〉S, whereas in Heisenberg’s picture we instead put the time dependence in the

operators, d
dt Ô

H(t) = (ih̄)−1[ÔH , Ĥ] + ∂
∂t Ô

H .

• Let’s start with a bit of a detour, which I find fascinating: Feynman’s path integral

description of quantum mechanics. We do not need operators in this description. Instead,

we compute amplitudes by integrating over all possible paths between the initial and final

states, weighted by a phase that is the path’s action:

M =

∫
[dq(t)] exp(iS[q(t)]/h̄)

∏

j

Oj(tj)

His intuitive idea was to consider double slit interference, and then extrapolate to infinitely

many tiny slits in infinitely many pretend barriers filling space.

The classical limit is recovered if S/h̄≫ 1, and then the rapidly varying phase integral

cancels except where the action is stationary, recovering the classical principle of least

action. In classical physics, S is not a physical observable; in this description of QM it

takes on some physical meaning as the path-weighting phase factor.

A nice thing about the path integral description of QM is that it generalizes imme-

diately to quantum field theory, where we integrate over all values of the quantum fields

(gauge fields, Fermion fields, Higgs field, etc, even the metric field if we’re doing quantum

gravity (though that’s tricky)) with e.g. S =
∫
ddxL in d space-time dimensions:

M =

∫
[dAµ(x)][dΨ(x)][dΦ(x)][dgµν(x)] . . . exp(iS/h̄)

∏
O(xµ).

1



The integral over all paths (or field configurations) can be evaluated by taking time

(or space-time) to be a lattice, and then taking the lattice mesh size to zero. Non-zero

mesh size can be put on a computer: this is what e.g. Julius Kuti does to study quantum

field theory.

• Define the propagator: K(x2, t2; x1, t1) ≡ 〈x2|U(t2, t1)|x1〉. Then

K(x3, t3; x1, t1) =

∫
dx2K(x3, t3; x2, t2)K(x2, t2; x1, t1),

ψ(x2, t2) =

∫
dx1K(x2, t2; x1, t1)ψ(x1, t1).

K (sometimes called the Kernal) depends on the theory, but not the initial state condition.

The wavefunction ψ(x, t) depends on the initial state. It follows from ih̄∂tU(t, t0) =

HU(t, t0) that K is a Green’s function for the S.E.

(
−h̄2

2m
∂2~x2

+ V (~x2)− ih̄∂t2

)
K(~x2, t2; ~x1, t1) = −ih̄δ3(~x2 − ~x1)δ(t2 − t1),

K(~x2, t; ~x1, t) = δ3(~x2 − ~x1), K(~x2, t2; ~x1, t1) ≡ 0 if t2 < t1.

Also note that

G(t) ≡

∫
d3~xK(~x, t; ~x, 0) =

∑

E

e−iEt/h̄.

This is naturally interpreted as coming from making time periodic. Taking β = it/h̄, this

is the thermal partition function. Also, the Fourier transform is nice:

G̃(E) = −i

∫
∞

0

G(t)eiEt/h̄/h̄ = −i

∫
∞

0

dt
∑

Ea

ei(E−Ea)t/h̄/h̄ =
∑

Ea

1

E −Ea
.

• Consider first a free particle, and we can easily evaluate

Kfree =

∫
d3p

(2πh̄)3
exp[i(~p · (~x2 − ~x1)− ~p2(t2 − t1)/2m)/h̄] =

=

(
m

2πih̄(t2 − t1)

)3/2

exp[im(~x2 − ~x1)
2/2h̄(t2 − t1)].

For the 1d SHO get

KSHO =
∑

n

un(x2)u
∗

n(x1)e
−iEn(t2−t1)/h̄ =

2



√
mω

2πih̄ sin(ω(t2 − t1))
exp[imω

(
(x22 + x21) cosω(t2 − t1)− 2x2x1

)
/2h̄ sin(ω(t2 − t1))].

These look a bit disgusting but are actually nice: the exponentials are the expected Hamil-

ton functions from classical mechanics, fitting with our discussion before. The fact that

they are precisely the classical result, without additional quantum corrections, is special

to cases where every term in the Hamiltonian is at most quadratic. In terms of the path

integral, the WKB approximation is related to a saddle point approximation of integrals,

and the integrals reduce to Gaussians for the case of quadratic actions, and the saddle

point approximation in such special cases happens to be exact.

E.g. for a free particle we can evaluate S[xcl, ẋcl] =
∫ t2,x2

t1,x1

dt 12m~̇x
2

= 1
2m(~x2 −

~x1)
2/(t2 − t1). For a SHO, S[xcl, ẋcl] =

∫
dt( 1

2
A2mω2)(sin2(ωt+ φ) − cos2(ωt+ φ)) = . . .

where we eliminate A and φ in terms of (x1, t1) and (x2, t2). Some interesting general

properties of Scl:
∂Scl

∂t2
= −E,

∂Scl

∂~x2
= ~p.

• Now let’s consider Feynman’s description:

K(~x2, t2; ~x1, t1) = N

∫
[d~x(t)]eiS[~x(t)]/h̄,

where the integral is over all paths from the initial state to the final state and N is a

normalization factor. This is called a functional integral. Break it up into lots of ordinary

integrals on a mesh, and then take the mesh size to zero: x0 ≡ xi and xN+1 ≡ xf . Consider

the free particle case:

K(xf , tf ; xi, ti) = N

(
−im

2πh̄ǫ

)N/2 ∫ N∏

i=1

dxi exp[
im

2h̄ǫ

N+1∑

i=1

(xi − xi−1)
2]

Where we take ǫ → 0 and N → ∞, with Nǫ = T held fixed. Do integral in steps. Apply

expression for real gaussian integral (valid: analytic continuation):

∫
∞

−∞

dφ exp(iaφ2) =

√
iπ

a
.

where we analytically continued from the case of an ordinary gaussian integral. Think of

a as being complex. Then the integral converges for Im(a) > 0, since then it’s damped.

More generally, use Gaussian integrals:

Z(Ji) ≡
N∏

i=1

∫
dφi exp(−Aijφiφi +Biφi) = πN/2(detA)−1/2 exp(A−1

ij BiBj/4).
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After integrating over x1, x2, . . ., xn−1, get:

(
2πih̄nǫ

m

)
−1/2

exp[
m

2πih̄nǫ
(xn − x0)

2].

So by induction the final answer for the free particle case is

K(xf , tf ; xi; ti) =

(
2πih̄T

m

)
−1/2

exp[im(xb − xa)
2/2h̄T ].

which agrees with the answer that we obtained (via just one dp Gaussian integral in the

usual formulation of QM).

We can check that it satisfies the S.E. and is properly normalized:

lim
T→0

√
m

2πih̄T
eimx2/2h̄T = δ(x).

• Comment on x2 and t2 dependence and connection with ψ ∼ ei(px−Et)/h̄ for free

particle example: fits with ∂Scl/∂t2 = −E and ∂Scl/∂x2 = p.

• Derivation of PI from the S.E.: 〈~x2, t2|U(t2, t1)|~x1, t1〉 can be evaluated from U ∼

e−iHT/h̄ by breaking up the T = (t2− t1) interval as T = Nδt, taking N → ∞ and δt→ 0.

In each interval we insert a complete set of both ~x and ~p projectors, and use 〈~x|~p〉 ∼ ei~p·~x/h̄:

〈~x+ d~x, t+ dt|e−iĤdt/h̄|~x, t〉 =

∫
d3~p

(2πh̄)3
〈~x+ d~x, t+ dt|e−iĤdt/h̄|~p〉〈~p|~x, t〉

=

∫
d3~p

(2πh̄)3
ei(−Hdt+~p·d~x)/h̄ ∝ eiLdt/h̄,

where in the last step we did the Gaussian momentum integral by analytic continuation and

completing the square; in the end, this gives the Legendre transformation:
∫
(~p·~̇x−H)dt→

∫
Ldt. Note that the path integral does not involve operators, they have been replaced by

the integrals over complete sets of eigenstates and eigenvalues.

A similar derivation leads to e.g.

〈q4, t4|T q̂(t3)q̂(t2)|q1, t1〉 =

∫
[dq(t)]q(t3)q(t2)e

iS/h̄,

where the integral is over all paths, with endpoints at (q1, t1) and (q4, t4).

The functional integral automatically accounts for time ordering: the LHS involves

time ordered operators, while the RHS has a functional integral, which does not involve

operators (so there is no need to worry about time ordering – it is automatic).
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• Derivation of the SE from the path integral:

ψ(x, t+ ǫ) =

∫
dyK(x, t+ ǫ; x′, t)ψ(x′, t)dx′

≈

∫
dηA exp(ih̄−1[ 1

2
mη2ǫ−1 − ǫV ( 1

2
(x+ η))])ψ(x+ η, t)

where η ≡ x′ − x and A is a normalization factor, that can be determined by considering

the ǫ → 0 limit; this gives A = (2πih̄ǫ/m), as found above. For ǫ → 0, the oscillating

exponential gives zero unless the exponent ∼ η2/ǫ is within one phase oscillation, so η is

also small. If we take η small and expand both sides in small ǫ, we get the SE for ψ(x, t)

from

ψ(x, t) + ǫ
∂ψ

∂t
≈ A

∫
dηeimη2/2h̄ǫ(1−

iǫ

h̄
V (x, t))(ψ + η∂xψ + 1

2η
2∂2xψ).

Now do the gaussian integrals and collect the O(ǫ) terms to get the SE.
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