Physics 225b, Homework 1 solutions
1. (Aside: consider the geodesics.) The geodesic equation is

d?zA 4 dxB dzC
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The non-zero Chirstoffel connection components are
F2’>¢ = —sinf cos ¥, Fie = Fg(p = cot 6.

So we can write the geodesic equation as
d*0 dpde d?¢
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So we see that ¢ = constant solves the 2nd eqn, and the first is then solved too
provided that d?6/dA\?> = 0. If we instead set § = constant, the first can only be
solved if sinf = 0 or cosf = 0, since otherwise d¢/d\ = 0 and there’s no motion
whatsoever. The choice sinf = 0 is bad too, since then there’s no non-trivial ¢
motion, so the only solution is § = 7 /2.

We want to solve (not necessarily on a geodesic)
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Which for 8 = constant we can write as
av? dve
% = sinfcos OV, % = —cot VY.

The solution for constant 6, satisfying the condition V4 (¢ = 0) = d% is

V% = cos(cos 0¢) = cos(2mcosf), V? = —cschsin(cosfp) = — cscfsin(27 cosh),

where we evaluated it for ¢ = 2.

2. V,V¥=0,V”+T},V?, and the non-zero Christoffel coefficients are (with a = t2/3)
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So the non-zero elements of V ,V" are
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3. Can get the Christoffel connection from the geodesic equation, obtained via stationary

proper time. Varying ¢ gives
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Varying x gives
a2z’ dt dt

Varying y gives d?y/d)\? = 0 and d?z/d)\? = 0. We thus obtain:
Y, =T% =C1+Cx)"", T},=C1+Cx),
with all others zero. Staring at
R gy = 8,5, + T2,T3, — (4 > 1),
potentially non-zero components are e.g.:
R10 =0Ty + T, = —C*(1 + Cz) 2 + C*(1 + Cz)(1 + Cz) = 0.

Likewise, all other possibly non-zero terms turn out to actually vanish! Since R”;,, =
0, this space is actually flat, and hence nearby geodesics do not deviate from each other.
The fact that it’s flat can be exhibited by finding coordinates 2 such that Ju'v =
Ny (as usual, n = diag(—1,1,1,1)). You can check that ' = (C~! + x)sinh(Ct),
2’ = (C71+1z)cosh(Ct), y' =y, 2’ = 2 does the trick: ds?> = —dt'? +dz'? +dy'? +dz'>.
Note that the point z = 0 maps to ¢’ = C~!sinh(Ct) and 2’ = C~! cosh(Ct), which
is the worldline of a particle with uniform acceleration C along the x’ axis. The given
metric is simply flat spacetime, as seen by a uniformly accelerating observer. This is

sometimes called “Rindler space.”
4. The non-zero Chirstoffel symbols are F?j = aad;j, I‘;O = a_lc'zég. This gives e.g.
R = 0,000y, + TO5T0; — (< v) = 0,00¢(aa)0sn, + 6,06, 0xpaia™ a — (p <> v).
So R%jx = 0 and
R%q; = 0y(ad)d;; — THT(; = (6* + aid)ds; — aadyja™ " ad} = aid;;.
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We also have
Ry =Tl — (p o v) = Tiply; — (p 4 v) = 6,0;,0 — (1 v)

These are the only independent non-zero component; all other non-zero components
are related to them by the various symmetries of the Riemann tensor.

We then compute R;p = 0 and
Roo = R'oi0 = 9" Rjoio = a~ > Roini = —a *R%0; == —3ii/a.

Rij = Roioj + Rkikj = a&éij + ((5’;;:(51] - (5;“52k)a2 = (CLEL + 2@2)(52']'

and
2
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5. The action is S = Sgx + Smp, where Sgn 161@ fd4x\/—gR is the usual Einstein
Hllbert action, and

1
Snp = / d*z/—g (FMFPU(—Zg”ng + BR™g*) + A,{ng“)

is the Maxwell action, with the extra 8 term.
The gravity EOM (eqns of motion) come from §5/§g"” = 0, and the electricity and
magnetism EOM come from §S/§A* = 0. Varying the metric gives terms discussed in

class for Sgg, to which we should add
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where the first line comes from d,/—g, the second from dg"” and the third from JR"*.
(a) Let’s first just compute the stress tensor for § = 0, which is give by the above

variation with 8 set to zero:

1
ToM = FunFuog — ZgWF,MF'fA — 24,0y + Gu AxJ .

For J# =0



For part (b), we can see how Maxwell’s eqn is altered by writing the Euler-Lagrange

eqns. for A, variations:
6S = / d*z\/=g [(—F" + 48R F\g™)0,0 A, + JHSA,] .

Integrating by parts, we get
1
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The current must still be conserved, since the modified action is still gauge invariant under

A, — A, + 0,f. This follows from the above modified Maxwell eqns,

DulvV/—g((F" + 43R M Fy . g")] = J".
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where the first equality (as discussed in lecture) is a general property of 4-divergences

v, JY

which can be shown using the expressions for the Christoffel connection, the second =
uses the above modified Maxwell eqn, and the third = uses the fact that the expression
in the [-- -] is antisymmetric in p <> v. The above modified Maxwell action violates the
equivalence principle assumption of Einstein, since it would allow one to notice gravity
effects (vie measuring electric and magnetic fields) even in a free-falling frame, since even
in a local free-falling frame R** # 0 if there is non-trivial space-time curvature there.
Finally, there’s the question about finding how the 5 term affects the Einstein action,

which follows from the variation of the action with dg"”:
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Using expressions above,
1 6Sug B
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where we dropped the terms coming from JR"” which, as mentioned earlier, need to be
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integrated by parts and then it can be checked that the result indeed vanishes.



