
Physics 225b, Homework 1 solutions

1. (Aside: consider the geodesics.) The geodesic equation is

d2xA

dλ2
+ ΓA

BC

dxB

dλ

dxC

dλ
= 0.

The non-zero Chirstoffel connection components are

Γθ
φφ = − sin θ cos θ, Γφ

φθ = Γφ
θφ = cot θ.

So we can write the geodesic equation as

d2θ

dλ2
− sin θ cos θ

dφ

dλ

dφ

dλ
= 0,

d2φ

dλ2
+ 2 cot θ

dθ

dλ

dφ

dλ
= 0.

So we see that φ = constant solves the 2nd eqn, and the first is then solved too

provided that d2θ/dλ2 = 0. If we instead set θ = constant, the first can only be

solved if sin θ = 0 or cos θ = 0, since otherwise dφ/dλ = 0 and there’s no motion

whatsoever. The choice sin θ = 0 is bad too, since then there’s no non-trivial φ

motion, so the only solution is θ = π/2.

We want to solve (not necessarily on a geodesic)

dV θ

dλ
− sin θ cos θV φ dφ

dλ
= 0,

dV φ

dλ
+ cot θV θ dφ

dλ
+ cot θV φ dθ

dλ
= 0.

Which for θ = constant we can write as

dV θ

dφ
= sin θ cos θV φ,

dV φ

dφ
= − cot θV θ.

The solution for constant θ, satisfying the condition V A(φ = 0) = d
dθ is

V θ = cos(cos θφ) = cos(2π cos θ), V φ = − csc θ sin(cos θφ) = − csc θ sin(2π cos θ),

where we evaluated it for φ = 2π.

2. ∇µV
ν = ∂µV

ν + Γν
µρV

ρ, and the non-zero Christoffel coefficients are (with a ≡ t2/3)

Γ0
ij = aȧδij =

2

3
t1/3δij , Γi

j0 = Γi
0j =

ȧ

a
δij =

2

3t
δij .

So the non-zero elements of ∇µV
ν are

∇0V
0 = 10t, ∇0V

1 = 21t2+
14

3
t2, ∇1V

0 =
14

3
t10/3, ∇1V

1 = ∇2V
2 = ∇3V

3 =
10t

3
.

1



3. Can get the Christoffel connection from the geodesic equation, obtained via stationary

proper time. Varying t gives

d

dλ

(

(1 + Cx)2
dt

dλ

)

= (1 + Cx)2
d2t

dλ2
+ 2C(1 + Cx)

dx

dλ

dt

dλ
= 0.

Varying x gives

d2x

dλ

2

+ C(1 + Cx)
dt

dλ

dt

dλ
= 0.

Varying y gives d2y/dλ2 = 0 and d2z/dλ2 = 0. We thus obtain:

Γ0
01 = Γ0

10 = C(1 + Cx)−1, Γ1
00 = C(1 + Cx),

with all others zero. Staring at

Rρ
σµν = ∂µΓ

ρ
νσ + Γρ

µλΓ
λ
νσ − (µ ↔ ν),

potentially non-zero components are e.g.:

R0
110 = ∂1Γ

0
10 + Γ0

10Γ
0
01 = −C2(1 + Cx)−2 + C2(1 + Cx)(1 + Cx) = 0.

Likewise, all other possibly non-zero terms turn out to actually vanish! Since Rρ
σµν =

0, this space is actually flat, and hence nearby geodesics do not deviate from each other.

The fact that it’s flat can be exhibited by finding coordinates xµ′

such that gµ′ν′ =

ηµ′ν′ (as usual, η = diag(−1, 1, 1, 1)). You can check that t′ = (C−1 + x) sinh(Ct),

x′ = (C−1+x) cosh(Ct), y′ = y, z′ = z does the trick: ds2 = −dt′2+dx′2+dy′2+dz′2.

Note that the point x = 0 maps to t′ = C−1 sinh(Ct) and x′ = C−1 cosh(Ct), which

is the worldline of a particle with uniform acceleration C along the x′ axis. The given

metric is simply flat spacetime, as seen by a uniformly accelerating observer. This is

sometimes called “Rindler space.”

4. The non-zero Chirstoffel symbols are Γ0
ij = aȧδij , Γ

i
j0 = a−1ȧδij . This gives e.g.

R0
iµν = δµ0∂tΓ

0
iν + Γ0

µλΓ
λ
νi − (µ ↔ ν) = δµ0∂t(aȧ)δiν + δν0δ

λ
i δλµaȧa

−1ȧ− (µ ↔ ν).

So R0
ijk = 0 and

R0
i0j = ∂t(aȧ)δij − Γ0

jλΓ
λ
0i = (ȧ2 + aä)δij − aȧδλja

−1ȧδλi = aäδij .
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We also have

Ri
jµν = Γi

µλΓ
λ
νj − (µ ↔ ν) = Γi

µ0Γ
0
νj − (µ ↔ ν) = δiµδjν ȧ

2 − (µ ↔ ν)

These are the only independent non-zero component; all other non-zero components

are related to them by the various symmetries of the Riemann tensor.

We then compute Ri0 = 0 and

R00 = Ri
0i0 = gijRj0i0 = a−2R0i0i = −a−2R0

i0i == −3ä/a.

Rij = R0
i0j +Rk

ikj = aäδij + (δkkδij − δkj δik)ȧ
2 = (aä+ 2ȧ2)δij

and

R = −R00 + a−2Rijδ
ij = 3

ä

a
+ 3a−2(aä+ 2ȧ2) = 6

ä

a
+ 6

ȧ2

a2
.

5. The action is S = SEH + SMβ , where SEH
1

16πG

∫

d4x
√−gR is the usual Einstein

Hllbert action, and

SMβ =

∫

d4x
√
−g

(

FκλFρσ(−
1

4
gκρgλσ + βRκρgλσ) + AκJλg

κλ

)

is the Maxwell action, with the extra β term.

The gravity EOM (eqns of motion) come from δS/δgµν = 0, and the electricity and

magnetism EOM come from δS/δAµ = 0. Varying the metric gives terms discussed in

class for SEH , to which we should add

−2
1√−g

δSMβ

δgµν
=

(

FκλFρσ(−
1

4
gκρgλσ + βRκρgλσ) + AκJλg

κλ

)

gµν

+ FµλFνσ(g
λσ − 2βRλσ)− 2A(µJν)

− 2βFκλFρσg
λσ(∇η (

δΓη
κρ

δgµν
)− ∇κ (

δΓη
ηρ

δgµν
)),

where the first line comes from δ
√−g, the second from δgµν and the third from δRκρ.

(a) Let’s first just compute the stress tensor for β = 0, which is give by the above

variation with β set to zero:

TEM
µν = FµλFνσg

λσ − 1

4
gµνFκλF

κλ − 2A(µJν) + gµνAλJ
λ.

For Jµ = 0
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For part (b), we can see how Maxwell’s eqn is altered by writing the Euler-Lagrange

eqns. for δAν variations:

δS =

∫

d4x
√
−g

[

(−Fµν + 4βRκµFκλg
λν)∂µδAν + JµδAµ

]

.

Integrating by parts, we get

1√−g
∂µ[

√
−g((Fµν + 4βRκ[µFλκg

ν]λ)] = Jν .

The current must still be conserved, since the modified action is still gauge invariant under

Aµ → Aµ + ∂µf . This follows from the above modified Maxwell eqns,

∇ν J
ν =

1√−g
∂ν(

√
−gJν) =

1√−g
∂µ∂ν [

√
−g((Fµν + 4βRκ[µFλκg

ν]λ)] = 0,

where the first equality (as discussed in lecture) is a general property of 4-divergences

which can be shown using the expressions for the Christoffel connection, the second =

uses the above modified Maxwell eqn, and the third = uses the fact that the expression

in the [· · ·] is antisymmetric in µ ↔ ν. The above modified Maxwell action violates the

equivalence principle assumption of Einstein, since it would allow one to notice gravity

effects (vie measuring electric and magnetic fields) even in a free-falling frame, since even

in a local free-falling frame Rκ̂µ̂ 6= 0 if there is non-trivial space-time curvature there.

Finally, there’s the question about finding how the β term affects the Einstein action,

which follows from the variation of the action with δgµν :

1

8πG
(Rµν − 1

2gµνR) = −2
1√−g

δSMβ

δgµν
.

Using expressions above,

−2
1√−g

δSMβ

δgµν
= TEM

µν + βFκλFρσR
κρgλσgµν − 2βFµλFνσR

λσ

where we dropped the terms coming from δRκρ which, as mentioned earlier, need to be

integrated by parts and then it can be checked that the result indeed vanishes.
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