2/6/17 Lecture 8 outline

• Maximally symmetric spaces: in n dimensions, have n translational Killing vectors and $\frac{1}{2}n(n-1)$ rotational Killing vectors. We do not assume any global transformations, like Lorentz transformations, merely the local existence of Killing vectors. This uniquely determines that $R_{\mu\nu\rho\sigma}$ has the form discussed last time, with $C_{\mu\nu\rho\sigma} = 0$ and R a constant. Again, there are three cases, corresponding to R positive, negative, or zero.

Aside: Recall that Killing vectors K satisfy $\mathcal{L}_K g_{\mu\nu} = 0$. This means that the Killing vector must satisfy

$$\nabla_{\mu}K_{\nu} + \nabla_{\mu}K_{\nu} = 0.$$

(Recall that the Lie derivative of a function is $\mathcal{L}_V f = V^{\mu} \partial_{\mu} f$, while that of tensors have additional terms, similar to the connection terms of covariant derivatives but instead involving V^{μ} , with same plus or minus signs depending on whether the indices are upper or lower, e.g. for a vector $\mathcal{L}_V U^{\mu} = [V, U]^{\mu} \equiv V^{\nu} \partial_{\nu} U^{\mu} - U^{\nu} \partial_{\nu} V^{\mu}$ and the Lie derivative of the metric along V is $\mathcal{L}_V g_{\mu\nu} = V^{\sigma} \nabla_{\sigma} g_{\mu\nu} + (\nabla_{\mu} V^{\lambda}) g_{\lambda\nu} + (\nabla_{\nu} V^{\lambda}) g_{\mu\lambda} = \nabla_{\mu} V_{\nu} + \nabla_{\mu} V_{\nu})$. If K_{μ} is a Killing vector, then $K_{\mu} \frac{dx^{\mu}}{d\lambda}$ is conserved if $\frac{dx^{\mu}}{d\lambda}$ solves the geodesic equation. If p^{μ} is the 4-momentum of a test mass on a geodesic, $\nabla_{(\mu} K_{\nu)}$ implies conservation of $K_{\nu} p^{\nu}$: the geodesic equation gives $p^{\lambda} \nabla_{\lambda} p^{\mu} = 0$ so $p^{\mu} \nabla_{\mu} (K \cdot p) = p^{\mu} p^{\nu} \nabla_{(\mu} K_{\nu)} = 0$.

If e.g. the metric is independent of t then the Killing vector is $K^{\mu} = \delta_t^{\mu} = (1, 0, 0, 0)$. Using

$$(\nabla_{\mu}\nabla_{\rho} - \nabla_{\rho}\nabla\mu)V_{\sigma} = R^{\lambda}_{\sigma\rho\mu}V_{\lambda},$$

and

$$R^{\lambda}_{(\sigma\rho\mu)} = 0,$$

find that a Killing vector has $K_{\mu;\rho;\sigma} = -R^{\lambda}_{\sigma\rho\mu}V_{\lambda}$.

For flat space-time, the Killing vectors are $K^{(\nu)}_{\mu} = \delta^{\nu}_{\mu}$ and $K^{[\nu\lambda]}_{\mu} = \delta^{\nu}_{\mu} x^{\lambda} - \delta^{\lambda}_{\mu} x^{\nu}$. One can similarly construct the Killing vectors of de Sitter or anti-de Sitter.

• Recall from last time: de Sitter, anti- de Sitter, and Minkowski space are all conformally equivalent to the Einstein static universe.

de Sitter $\cosh(t/C) = 1/\cos t'$:

$$ds^2 = \frac{C^2}{\cos^2(t')} d\bar{s}^2, \qquad d\bar{s}^2 \equiv -(dt')^2 + d\chi^2 + \sin^2\chi d\Omega_2^2$$

Here $-\pi/2 < t' < \pi/2$. Represent dS by a square, with t' on the y axis and $\chi \in [0, \pi]$ on the x axis. Spacelike slices are S^3 s, so each point on the diagram is an S^2 , except the

edges $\chi = 0$ and $\chi = \pi$ are points, the North and South poles of the S^3 . Diagonal lines are null rays. So a photon released at past infinity will get to an antipodal point on the sphere at future infinity. Note that points can have disconnected past or future light cones: the spherical spatial sections are expanding so light from one point cannot necessarily get to another.

Likewise anti-de Sitter: $\cosh \rho = 1/\cos \chi$

$$ds^2 = \frac{C^2}{\cos^2 \chi} d\bar{s}^2,$$

where now $0 \le \chi < \pi/2$ and t' is extended to run from $-\infty$ to $+\infty$.

Likewise, consider flat Minkowski space-time in spherical coordinates, $ds^2 = -dt^2 + dr^2 + r^2 d\Omega_2^2$. Now take u = t - r, v = t + r, $U = \arctan u$, $V = \arctan v$, T = V + U, R = V - U, to get a patch of the Einstein static universe, with $0 \le R < \pi$ and $|T| + R < \pi$. Past time-like infinity i^- is $T = -\pi$, R = 0; future time-like infinity i^+ is $T = \pi$, R = 0, spatial infinity i^0 is T = 0, $R = \pi$, future and past null infinity, called scri $\mathcal{I}\pm$, are $T = \pm(\pi - R)$, for $0 < R < \pi$.