
1/30/17 Lecture 6 outline

Recall

Gµν ≡ Rµν − 1
2Rgµν = 8πGTµν ; so Rµν = 8πG(Tµν − 1

2Tgµν). (1)

gµν = ηµν + hµν

G(1)
µν (h) = −1

2
∂2h̄µν + 1

2
∂ρ∂µh̄νρ +

1
2
∂ρ∂ν h̄µρ −

1
2
ηµν∂

ρ∂σh̄ρσ = 8πTµν .

Choose an xµ → xµ + ξµ gauge such that ∂ρh̄ρσ = 0, which eliminates all but the first

term in G
(1)
µν .

• Last time: Production of gravitational waves: want to solve G
(1)
µν = 8πGTµν which

in the ∂µh̄µν = 0 gauge choice becomes −∂2h̄µν = 16πGTµν . We know how to solve this

equation, using ~∇
2
(1/r) = −4πδ3(~x), just like the Lienard-Wiechert potential in E&M :

hµν(t, ~x) = 4G

∫

d3~y
1

|~x− ~y|
Tµν(t− |~x− ~y|, ~y).

Far away from the source, do a multipole expansion. The leading term is the quadrupole

term:

hij ≈
2G

r

d2Iij
dt2

(tr), Iij(t) =

∫

d3yyiyjT 00(t, ~y).

Here is how to show it: the ~y integral above is over the past light cone of the space-time

point xµ. Let’s F.T. t → ω:

hµν(ω, ~x) = 4G

∫

d3~y
1

|~x− ~y|
Tµν(ω, ~y)e

iω|~x−~y|.

The gauge condition gives −iωh0µ(ω, ~x) = ∂ihiµ(ω, ~x), so we only need to solve for the

i, j 6= 0 space components of the metric wave: µ → i and ν → j. In the far zone, to leading

order, we replace |~x− ~y| → r and can take eiωr/r out of the integral. Now use

∫

d3~yT ij =

∫

(∂k(T
kjyi)− ∂kT

kjyi) = −iω

∫

T 0(jyi) =

= 1
2

∫

(∂k(T
0kyiyj)− ∂kT

0kyiyj) = −1
2ω

2

∫

T 00yiyjd3~y

(using conservation of Tµν in leading, approximately flat-space form, and dropping surface

terms since we take the source to be compact). So the leading term is quadrupole radiation,
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unlike E&M where the leading term is dipole radiation. There is no dipole radiation here

because conservation of momentum implies that the dipole term is a constant in time.

E.g. two stars of mass M , separated by distance 2R in the weak field, non-relativistic

limit have Iij ∼ MR2 and d2Iij/dt
2 ∼ Ω2MR2 with Ω = 2π/T = v/R =

√

GM/4R3.

• How much power is carried away in the gravitational radiation of the quadrupole?

Recall from last time we can write

G(1)
µν = 8πG(Tµν + tµν), tµν ≡

1

8πG
(Gµν −G(1)

µν )

and we can sort-of interpret tµν as the energy-momentum of the gravitational fields. To

leading, quadratic order in h:

tµν ≈
1

8πG

(

−1
2hµνη

ρλR
(1)
ρλ + 1

2ηµνh
ρλR

(1)
ρλ +R(2)

µν − 1
2ηµνη

ρλR
(2)
ρλ

)

.

As we discussed last time, this is not gauge invariant so not fully kosher. Nevertheless, it

has some merit. If we integrate it, the gauge variations drop out to leading order in small

h perturbation theory around flat space, so this is a sensible way to compute the power

radiated. Since G
(1)
µν satisfies the leading order Einstein’s equations, we have

tµν ≈
1

8πG
(R(2)

µν − 1
2ηµνη

ρλR
(2)
ρλ ).

Upshot: the radiated power is related to the derivative of hij squared. As above, hij is

related to a 2nd time derivative of the quadrupole moment. So the power is related to

the third derivative of the quadrupole squared (the details and indices are tedious to work

out):

P =
G

5c9
d3Iij(tr)

dt3
d3Iij(tr)

dt3
.

(check units and put back in c’s: [G] = M−1(L/T )3T , [d
3I

dt3 ] = M(L/T )4T−1, P =

M(L/T )2T−1). See e.g. Weinberg ch 10.5 for details, e.g. the factor of 1/5 is related

to the integral of four unit vectors over all solid angle.

Example (details in Weinberg ch 10.5): Weber’s attempt to directly observe grav-

itational radiation from a sound vibration in an large aluminum cylinder. The den-

sity in the cylinder is ρ = ρ0 + ρ1, where ρ1 is the vibrating sound wave fluctuation:

ρ1 = ǫρ0 sin(kz) cos(ωt). There is a quadrupole term Izz = A
∫ L

0
ρ1z

2dz. Find energy loss:

Γgrav =
P

E
=

64GMv4s
15L2c5

,
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where vs is the sound velocity. Plug in Weber’s values: L = 1.53m, vs = 5.1 × 103m/s,

M = 1.4 × 103kg, get Γgrav = 4.7 × 10−35s−1. It proved to be too small for him to

eliminate all systematics and accurately and precisely measure. Instead, tried to use the

bars as detectors of gravity waves produced in space. Found some possible effects, but

could not eliminate the systematics to show they were actually gravity waves; so did not

succeed.

Another example (again, Weinberg ch 10.5). Gravitational radiation of a large, rotat-

ing body. If rotation frequency is Ω, the radiation has frequency peaked at 2Ω (since we

square h). The result is

P (2Ω) =
32GΩ5I2e2

5c5
,

where I = I11 + I22 and e = (I11 − I22)/I, where the rotation is around the 3 axis. Only

radiates if not axially symmetric around axis of rotation. Apply e.g. to the rotation of

Jupiter around the sun, take e = 1, I = mr2, Ω = 1.68 × 10−8s−1, m = 1.9 × 1027kg,

r = 7.79× 1011m, get P ≈ 5.3kW , tiny.

Consider two stars, each of massM , separated by distance 2R, rotating with frequency

Ω. Evaluate Ixx = 2MR2 cos2(Ωt), Ixy = MR2 sin(2Ωt), Iyy = 2MR2 sin2(Ωt). Let

Ω = 2π/T with T the period and use Kepler’s law V 2/R = GM/(2R)2 to get R =

(GMT 2/16π2)1/3. Average over a period. Get

〈P 〉 =
128

5c5
GM2R4Ω6 =

128

5
41/3

c5

G

(

πGM

c3T

)10/3

.

= 1.9× 1026
(

M

Msun

1h

T

)10/3

W.

By comparison, the sun radiates electromagnetic radiation 3.9×1026W and a large galaxy

about 1037W and a bright gamma-ray burst about 1045W . The LIGO event of Sept 14,

2015 was estimated to have a peak gravitational power radiation of 3.6 × 1049W , which

for that brief period was greater than all light radiated by all stars in the visible universe.

The approximations that led to the above formula are of course invalid for getting the

power radiated by black-hole mergers. The event was interpreted as an inspiral of a 35

solar mass black hole and a 30 solar mass black hole, resulting in a 62 solar mass black

hole. The mass and rotational energy difference was radiated primarily in gravity waves.

The GR analysis could not be done analytically; it was done numerically on computers.
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• Consider isotropic and homogeneous space times: looks the same in all directions

and the same under translations. A maximally symmetric space-time of dimension n has

Rρσµν =
R

n(n− 1)
(gρµgσν − gρνgσµ),

with R the Ricci scalar that is constant over the space-time. The Weyl tensor for these

spaces is Cρσµν = 0. There are three possibilities: R = 0: flat; R > 0: de Sitter;

R < 0: anti-de Sitter. These are solutions of Einstein’s equations for Tµν ∼ gµν , with zero,

positive, and negative CC respectively. For n = 4 we have Rµν = 3κgµν , where R = 12κ

and Einstein’s equations are satisfied if ρ = −p = 3κ/8πG.

One way to get de Sitter space is to start in 5d, with ds25 = −du2+dx2+dy2+dz2+dw2

and restrict to a hyperboloid −u2 + x2 + y2 + z2 + w2 = C2, where C is the de Sitter

radius. By taking u = C sinh(t/C), and w, z, y, z ∼ C cosh(t/C) times S3 coordinates, the

metric is

ds2 = −dt2 + C2 cosh2(t/C)dΩ2
3,

where dΩ2
3 is the solid angle on an S3. These are geodesically complete coordinates, so the

topology is R× S3.

Likewise anti-de Sitter starts with ds25 = −du2−dv2+dx2+dy2+dz2 and restricts to

a hyperboloid u2 + v2 −x2 − y2 − z2 = C2. Write u = C sin(t′) cosh ρ, v = C cos(t′) cosh ρ,

and x, y, z ∼ C sinh ρ times S2 coordinates, gives

ds2 = C2(− cosh2 ρdt′2 + dρ2 + sinh2 ρdΩ2
2).

The t′ coordinate is a closed time-like curve, which is bad, so consider the covering space

where t′ is not identified with t′ + 2π.

• Recall Friedmann Robertson Walker:

ds2 = −dt2 + a2(t)dΣ2,

and consider case where the 3d space dΣ2 is maximally symmetric. Again, three possibili-

ties: the 3d space can have k = R3d/6 negative (open), positive (flat), or positive (closed).

By a choice of coordinates,

dΣ2 =
dr2

1− kr2
+ r2dΩ2

with k = 0, 1,−1. These spaces solve Einstein’s equations for a fluid Tµν = (p+ ρ)UµUν +

pgµν . Conservation of energy requires ρ̇/ρ = −3(1 + w)ȧ/a, where w ≡ p/ρ. For constant
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w this gives ρ ∼ a−3(1+w). Recall e.g. that the null dominant energy condition conjecture

is |w| ≤ 1. Einstein’s equations lead to the Friedmann equations:

(

ȧ

a

)2

=
8πG

3
ρ−

k

a2
,

ä

a
= −

4πG

3
(ρ+ 3p).

Get ρ ∼ a−n with equation of state w = 1
3
n − 1. Matter has n = 3 (so w = 0), radiation

has n = 4 (so w = 1/3), curvature has n = 2 (so w = −1/3), and vacuum has n = 0,

so w = −1. For example, the Einstein static universe had ρΛ = 1
2ρM ; it is topologically

R × S3.

• Recall Schwarzschild solution, e.g. for a Tµν a spherically symmetric, static, delta

function at the origin. Away from the origin, Tµν = 0, so we solve Einstein’s equations

in vacuum, Rµν = 0. There is Birkhoff’s theorem, that there is a unique vacuum solution

with spherical symmetry, and it turns out to be static. If we take1

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2, (2)

can compute Rµν and see that it vanishes only if α = −β and ∂r(re
2α) = 1, which gives the

Schwarzschild solution, e2α = 1−Rs/r. Recall that we know from the Newtonian limit that

h00 = 2Φ, so Rs = 2GM . The Ricci tensor vanishes for Schwarzschild, but the Riemann

tensor does not. Write out some example components, e.g. Rr
φrφ = re−2β sin2 θ∂rβ,

Rt
θtθ = −GM/r, etc. The non-zero Riemann tensor will give e.g. the correct focusing of

nearby geodesics,
D2

dλ2
δxµ = Rµ

νρσ

dxν

dλ

dxρ

dλ
δxσ.

Using the full metric, can explore this beyond the linearized limit discussed above. Can

show

RµνρσRµνρσ =
48G2M2

r6
.

We see that r = 0 is really a singularity whereas r = Rs is not a real singularity.

• Since

ds2 = −(1−
2GM

r
)dt2 + (1−

2GM

r
)−1dr2 + r2dΩ2

1 a e
2γ(r) factor in front of the r

2
dΩ2 term could be eliminated by a redefinition of r → e

γ
r
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is static and rotationally invariant, there are four Killing vectors corresponding to H and

~L.

Recall that Killing vectors K satisfy LKgµν = 0. (Recall that the Lie derivative

of a function is LV f = V µ∂µf , while that of tensors have additional terms, similar to

the connection terms of covariant derivatives but instead involving V µ, with same plus

or minus signs depending on whether the indices are upper or lower, e.g. for a vector

LV U
µ = [V, U ]µ ≡ V ν∂νU

µ − Uν∂νV
µ and the Lie derivative of the metric along V is

LV gµν = V σ∇σgµν +(∇µV
λ)gλν +(∇νV

λ)gµλ = ∇µVν +∇µVν). If Kµ is a Killing vector,

then Kµ
dxµ

dλ is conserved if dxµ

dλ solves the geodesic equation. If pµ is the 4-momentum of

a test mass on a geodesic, ∇(µKν) implies conservation of Kνp
ν : the geodesic equation

gives pλ∇λp
µ = 0 so pµ∇µ(K · p) = pµpν∇(µKν) = 0.

If e.g. the metric is independent of t then the Killing vector is Kµ = δµt = (1, 0, 0, 0).

So for Schwarzschild we have

H → ∂t → Kµ = (−(1−
2GM

r
), 0, 0, 0).

Lz → ∂φ → Lµ = (0, 0, 0, r2 sin2 θ).

Taking θ = π/2, the conserved quantities are

E = (1−
2GM

r
)
dt

dλ
, L = r2

dφ

dλ
.

(For massive particles, it is actually Lz/m.) The orbits can be written as

1
2
(
dr

dλ
)2 + Veff (r) =

1
2
E2,

Veff (r) =
1
2 ǫ− ǫ

GM

r
+

L2

2r2
−

GML2

r3
,

with ǫ ≡ −gµν
dxµ

dλ
dxν

dλ so ǫ = 1 for a massive particle with λ = τ and ǫ = 0 for a massless

particle.
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