1/24/17 Lecture 5 outline

G =R, — %ng/ =81GT),.; SO R, =81G(T, — %Tgu,,). (1)

e Last time: take g,, = 1., +h,, and treat h,, as a small perturbation and linearize,

RY) ~ 1070,y + 0% 0phs — 0,000 — %Ny,

1
2
RW ~ 9,0,h*" — 8°h.

Plug in to get G, = Ry, — %UWR It looks slightly nicer if expressed in terms of EW =
Py — %nwh:

G (h) = =10, + 1070, by + 2070, by — 3010 0P0 iy = 87T,

As discussed last time, we can choose an z# — z# + ¢ gauge such that 8”h,, = 0, which
eliminates all but the first term in GE}V) .

e Last time: gravity waves in empty space. Take T}, = 0 in Einstein’s equations,
and linearize them to get 3281’3’ = 0. Call hf,:f = 2s;; for the ¢, j components and zero
otherwise. Write a plane wave solution, hf,:f = euyeikm + c.c., which solves the wave
equation for k2 = 0: the graviton is massless. To keep it transverse (eliminate gauge dof),
need k*e,, = 0. Taking k* = (w,0,0,w), find, 2 independent polarization components,
e11 = hy and e;s = hx. A ring of particles in the z — y plane will oscillate in a +
shape in reaction to a gravitational wave with hy # 0, and hx = 0. A gravitational
wave with hx # 0 and hy = 0 will cause them to oscillate in a X pattern. Can define
hr.r = (hy +ihx)/v/2 circular polarizations.

e Aside on currents and the energy momentum tensor. In E&M, the charge den-
sity current of a bunch of point charges is J* = ¢g71/23Y" q, [6*(x — x,)dzd, where
the integral is over the particle’s world-line and g~'/2§%(x) is coordinate invariant, just
as ¢'/2d*z is. Likewise, the energy momentum tensor of a system of point particles is
T = g~ Y23 my, [ phdald*(z — z,). For massive particles p#* = mdz! /dr. In the flat-
space, non-relativistic limit, to order v°, we have 790 ~ Yo mq 0% (£—%,) = p with all other
components zero. To order v, the non-zero components are T% ~ > mqv.6*(Z — Z,),
with all other components zero (this is enough for one of the HW questions).

e Beyond the linearized approximation. Recall that in E&M we have T  =TH" +

total matter

=0, so P/ [y, A*TTO" is conserved:
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Ttica and translation invariance implies 0, T} otal =

otal
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it can only change if there is a flux of energy-momentum through the boundary V. The

matter and field energy and momentum are of course not separately conserved, since energy

and momentum can be exchanged between the matter and E and B fields: BMT}LZ.';Z 4=
— 1PN, 0T = +2F"2 5

We can get insight into the analogous issues for the energy and momentum of gravity

matter —

by going beyond the linearized approximation. Define g,,, = 71,, + k., where now we will

not impose that h,, = h( ) and consider Einstein’s equations re-written as

1
G;(Llu) =87G(Ty +tu), by = %(Guu _ G21V)>'

It looks trivial. The idea will be to try to interpret 7, as the matter contribution, and ¢,,,,
as sort-of like an energy-momentum tensor for the gravitational field, so the thing on the
RHS of the first equation is like a total energy-momentum tensor. Note that Gl(}y) satisfies
the linearized Bianchi identity, BMG(I) 0 (i.e. ordinary not covariant derivatives) so
Tuw = Ty + 1, satisfies 0#7,, = 0, again without the covariant derivatives. This all looks
bad for general covariance but good for conservation of 7, without the extra contributions
from covariant derivatives. This all does not literally make sense (it is not gauge invariant);
it can nevertheless be used to define a well-defined energy P* = fz 70%d32 where ¥ is a
space like surface. Likewise for the angular momentum: J* = [ d3z(z#770 — z¥7+0).

See Wald 4.4 for more details.

In particular, if we consider Einstein’s equations to 2nd order in h,,, in vacuum.
Need to work out Rl(fy) to order h2. To satisfy Einstein’s equations, need to correct metric,
hw = b + 1) + .. with G2 [AD] + G, [h®)] = 0. Write this as G4 [h(?)] = 8nt,, =
—G,(f,,) [h(l)]. This tuv looks roughly analogous to 1), fiela in E&M, with A, — h,,.

e Energy and momentum of gravitational plane waves: plug hf,:f into t,,. The ex-
pression looks complicated but simplifies if we space-time average to eliminate all terms
like e=2h7. B.g. (RD)) = Lkuk, (e¥%ex, — Led]?) and (t,) = 25 (|eg1 |2 + [era]?).

e Production of gravitational waves: want to solve Gf},,) = 87G7T), which in the

8”71W = 0 gauge choice becomes —9? BW = 16mGT),,. We know how to solve this equation,
using @2(1/7”) = —4763(F), just like the Lienard-Wiechert potential in E&M :
_ 1
R —4G/d3yﬁﬁ — T, (t — |7 — ], 7).
w0, 7) T Tl = F = 7.9

Far away from the source, do a multipole expansion. The leading term is the quadrupole

term: 2G 21
dtﬁj (t.), L) = / Pyy'y’ TO(t, 7).

E.g. two stars of mass M, separated by distance 2R in the weak field, non-relativistic
limit have I;; ~ M R? and d?I;;/dt* ~ Q*M R? with Q = 27/T = v/R = \/GM /AR3.
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