
1/11/17 Lecture 2 outline

• Introduction, continued. Last time: Einstein’s equations follow from varying the

Einstein-Hilbert action with respect to δgµν :

S =

∫

ddx
√

|g|
[

1

16πG
R + Lmatter(η → g, ∂µ → ∇µ) + Lother

]

.

The gµν Euler Lagrange equations then give

Gµν ≡ Rµν − 1
2Rgµν = 8πGTµν , Tµν = −2

1
√

|g|
δSmatter

δgµν
.

The last expression for Tµν is equivalent to that found via Noether’s procedure. The Lother

possible terms will lead to variants of (deviations from) Einstein’s equations. Fill in some

details here.

• Continue from last time.

S[g,X ] =
1

16πG

∫

d4x
√
−gR + Severything else[η,X, ∂µX ]

∣

∣

η→g,∂→∇
. (1)

(Last time we left the coefficient of the gravity term as α/G, and left it that we’d determine

the coefficient by checking agreement with the Newtonian limit. Let’s now just cut to the

chase and write the answer, and check that it’s right.)

The variation of (1) with gµν → gµν + δgµν gives

0 =
1√−g

δ

δgµν

∫

d4x
√−gRµνg

µν + 8πGTµν (2)

where we used the relation discussed last time,

Tµν = −2
1√−g

δSeverything else

δgµν
. (3)

A way to relate this to the usual notion is to consider translations xµ′

= xµ+aµ and then,

linearizing in small aµ, get δgµν ≈ aµ;ν + aν;µ, where the ; means covariant derivative.

Then get δS =
∫

d4xTµνa
µ;ν . Note this shows T ;ν

µν = 0, covariant energy-momentum

conservation. For a macroscopic body, get Tµν = (p+ ρ)uµuν + pgµν .

Now use g = e−Tr ln gµν

to get δg = −ggµνδg
µν , so δ

√−g = −1
2

√−ggµνδg
µν . Also,

get that δRρ
µλν = ∇λ(δΓ

ρ
νµ − (λ ↔ ν) and then that the gµνδRµν term contributes only

total covariant derivative terms, ∇ρ ∇σ(−δgρσ + gρσgαβδg
αβ), that can be dropped.
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So we have, finally, Einstein’s equations:

Rµν − 1
2Rgµν = 8πGTµν . (4)

As a first check that things are good, note that energy-momentum conservation

∇µTµν = 0 is compatible with this equation, thanks to the Bianchi identity discussed

last week, ∇µ(Rµν − 1
2
gµνR) = 0.

Let’s rewrite (4) another convenient way. Get R − 2R = −R = 8πGT , T ≡ Tµ
µ , so

Rµν = 8πG(Tµν − 1
2Tgµν). (5)

• Cosmological constant. There can be a constant term in Selse in (1),

Severything else = Selse +

∫

d4x
√
−g

( −Λ

16πG

)

. (6)

The cc contributes to (3),

T cc
µν = − Λ

8πG
gµν . (7)

So ρvac = −pvac = Λ/8πG (sometimes this is called the c.c.). Einstein’s equations then

become

Rµν − 1
2Rgµν + Λgµν = 8πGT else

µν . (8)

This is how Einstein wrote it when he made his “greatest blunder” by putting it in to try

to force his equations to give a static universe, rather than Hubble expansion.

• Cosmological constant Tµν = −ρΛgµν + T else
µν . Supernovae observations (1998) +

other tests

ρΛ = (1.148± 0.11)× 10−123

in natural, Planck units. ΩΛ ≈ 0.7.

• Free-falling coordinates: can always use a coordinate transformation to take xµ → xµ̂

such that, at some point p, gµ̂ν̂ |p = ηµ̂ν̂ and ∂σ̂gµ̂ν̂ |p = 0, so the connection vanishes there.

This shows that the metric and the connection aren’t direct physical observables. But the

2nd derivative can’t always be chosen to vanish at p, not if there is local curvature at p.

Counting in d spacetime dimensions. The metric has d(d + 1)/2 components. If we

expand xµ = ∂xµ

∂xµ̂ |pxµ̂ + . . . around p, the first derivatives of xµ w.r.t. xµ̂ has enough

terms to set gµν |p = ηµν . There are 1
2p(p − 1) unused components here, which are the

Lorentz group transformations. At next order, ∂2xµ/∂xµ̂∂xn̂u has the correct number of
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components to set ∂σ̂gµ̂ν̂ |p = 0. At next order, ∂λ∂σgµν has ( 12d(d + 1))2 terms whereas

∂3xµ/∂xµ̂∂xν̂∂xσ̂ has d2(d+ 1)(d+ 2)/6 terms, so the difference is 1
12d

2(d2 − 1), which is

20 in d = 4. These are the independent components of the Riemann curvature tensor.

Recall R([µν][ρσ]) is antisymmetric if one exchanges the first and second index pair.

Likewise for the third and forth. Symmetric if first and second pair exchanged. Also

Rµ[νρσ] = 0 Can count and show number of components is 1
12d

2(d2 − 1), as above.

Bianchi identity: ∇[λRρσ]µν = 0. Equivalently ∇λRρσµν + (λ → ρ → σ) + (λ → σ →
ρ) = 0 Contract with gνσgµλ to get ∇µGµν = 0.

Ricci tensor Rµν = Rλ
µλν = Rνµ and scalar R = Rλ

λ.

Also Weyl (or conformal) tensor, which is the Riemann tensor minus all traces:

Cρσµν = Rρσµν − 2

d− 2
(gρ[µRν]σ − gσ[µRν]ρ) +

2

(d− 1)(d− 2)
gρ[µgν]σR.

By construction, Cρσµν has the same index pair (anti) symmetry as the Riemann tensor

and all traces vanish: gρµCρσµν = 0, and likewise for any other index contraction. The

Weyl tensor only exists for d > 2. It is invariant under conformal transformations: get

same answer for gµν(x) and ω2(x)gµν(x).
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