3/22/17 Lecture 18 outline

• Recall from last time:

$$E \leftrightarrow M, \quad S \leftrightarrow A/4G, \quad T \leftrightarrow \kappa/2\pi.$$

For a Schwarzschild black hole:

$$T = \frac{\kappa}{2\pi} = \frac{1}{8\pi GM} = 1.2 \times 10^{26} K(\frac{1g}{M}) = 6.0 \times 10^{-6} K(\frac{M_{\odot}}{M}).$$

Introduce proper distance η by $g_{\eta\eta} = 1$, find $\eta = \sqrt{r(r-r_H)} + r_H \cosh^{-1}(\sqrt{r/r_H}) \approx 2\sqrt{r_H(r-r_H)}$ near the horizon. Define $\omega = t/2r_H$ and the metric near r_H is

$$ds^2 \sim -\eta^2 d\omega^2 + d\eta^2 + r_H^2 d\Omega^2.$$

Rotate to Euclidean time and avoid a conical singularity at the origin by giving $i\omega = 2\pi$ periodicity. Use $e^{iS/\hbar} \rightarrow e^{-\beta H}$ with $\tau_E/\hbar = \beta = 1/kT$ i.e. $kT = \hbar/\tau_E$. Here it gives $kT = \hbar/8\pi GM$.

• Hawking's calculation and the closely related Unruh effect. A uniformly accelerated observer in Minkowski space sees a thermal spectrum: $T = a/2\pi$.

Consider $ds^2 = -dt^2 + dx^2$ and an observer with uniform acceleration: $\alpha t(\tau) = \sinh(\alpha \tau)$, $\alpha x(\tau) = \cosh(\alpha \tau)$, which has $\sqrt{a_{\mu}a^{\mu}} = \alpha$. Motivates a coordinate change: $at = e^{a\xi} \sinh(a\eta)$ and $ax = e^{a\xi} \cosh(a\eta)$, which covers region I with x > |t|. A constant acceleration path has $a\eta = \alpha \tau$ and $a\xi = \ln(a/\alpha)$ where α is the acceleration. So for $\alpha = a$, the path is $\eta = \tau$, $\xi = 0$. The metric is $ds^2 = e^{2a\xi}(-d\eta^2 + d\xi^2)$ Rindler space or wedge. The Killing vector ∂_{η} corresponds to a boost in the x direction and has norm given by $V = e^{a\xi}$ and there is a horizon at x = t with surface gravity $\kappa = a$. Write Rindler space plane wave solutions in terms of $e^{ik\xi - i\omega\eta}$. The original (t, x) plane corresponds to regions I, II, III, and IV.

In Minkowski space we write $\phi = \int dk (a_k f_k + a_k^{\dagger} f_k^*)$ where f_k is a plane wave with positive frequency. In the Rindler coordinates we write

$$\phi = \int dk (b_k^{(I)} g_k^{(I)} + b_k^{(IV)} g_k^{(IV)} + h.c.),$$

where $g_k^{(I)} \sim e^{-i\omega\eta + ik\xi}$ is a positive frequency solution in region *I*, which vanishes in region *IV*, and $g_k^{(IV)}$ is similar in region *IV* vanishing in region *I*. We quantize as usual for the Minkowski vacuum has $a_k |0\rangle_M = 0$, whereas the Rindler vacuum has $b_k^{(I)} |0\rangle_R = b_k^{(IV)} |0\rangle_R$.

Find (Carroll):

$$b_{k}^{(\pm)} = \frac{1}{\sqrt{2\sinh(\pi\omega/a)}} (e^{\pi\omega/2a} c_{k}^{\pm} + e^{-\pi\omega/2a} c_{-k}^{(\mp)\dagger}),$$

where \pm refer to the regions $\pm x > 0$ and $c_k^{(\pm)}$ are annhibition operators in terms of left or right moving $(x - \pm t)$ modes and in the vacuum $c_k^{(\pm)}|0\rangle_M = 0$. Then $_M \langle 0|b_k^{\dagger}b_k|0\rangle_M \sim (e^{2\pi\omega/a} - 1)^{-1}$, i.e. a thermal spectrum with $T = a/2\pi$.

• Hawking's description. $\phi = \int dk(f_k a_k + h.c.)$ where f_k are positive frequency of \mathcal{I}^- . Also $\phi = \int dk(p_k b_k + q_k c_k + h.c.)$ where p_k are purely outgoing, giving zero on the horizon, and q_k are purely incoming, giving zero on \mathcal{I}^+ , both with positive frequency where they are non-zero. Find $p_i = \sum_j (\alpha_{ij} f_j + \beta_{ij} \bar{f}_j)$ and $q_i = \sum_j (\gamma_{ij} f_j + \eta_{ij} \bar{f}_j)$ and hence $b_i = \sum_j (\bar{\alpha}_{ij} a_j - \bar{\beta}_{ij} a_j^{\dagger})$ and $c_i = \sum_j (\bar{\gamma}_{ij} a_j - \bar{\eta}_{ij} a_j^{\dagger})$. Take initial vacuum $a_i |0\rangle = 0$ and then find that the outgoing mode has $\langle 0_- |b_i^{\dagger} b_i | 0_- \rangle = \sum_j |\beta_{ij}|^2$. Consider a wave equation solution p_{ω} propagating backwards from \mathcal{I}^+ with zero Cauchy data on the event horizon. Follow solution back to \mathcal{I}^- . Find this is determined in terms of κ

• Related to entanglement: $\operatorname{tr}_{x<0}|0\rangle\langle 0| = Z^{-1}e^{-2\pi H}$, corresponding to $T = 1/2\pi$.

• Density matrix associated with region A, $\rho_A = \text{Tr}_{\bar{A}} |\Psi\langle\rangle\Psi|$ and then $S(A) = -\text{Tr}(\rho_A \log \rho_A)$. In AdS/CFT this can be computed from the Ryu Takayanagi formula, $S(A) = Area(\tilde{A})/4G$ where \tilde{A} is the minimal surface in the bulk that gives A on the boundary.

• Near the horizon, take $r = r_H + \delta$, $\delta \equiv \rho^2/4r_H$, and $X = \rho \cosh(t/2r_H)$ and $T = \rho \sinh(t/2r_H)$. Let U = T - X and V = T + X. Region 1 is U < 0, V > 0, region 2 is U > 0, V > 0 etc.

Infalling observer has $d\tau \propto e^{-t/r_H} dt$. Infalling observer has τ frequencies ν and outside observer has t frequency modes ω . Consider 2d KG field and let $u, v = t \mp r_*$ with $r_* = r + r_H \ln(r - r_H)$. Expand $\phi = \int (a_\nu e^{-i\nu U} + h.c.)$ or $\phi = \int (b_\omega e^{-i\omega u} + h.c.)$. Then

$$b_{\omega} = \int d\nu (\alpha_{\omega\nu} a_{\nu} + \beta_{\omega\nu} a_{\nu}^{\dagger}).$$

where $\alpha_{\omega\nu} = 2r_H(\omega/\nu)^{1/2}(2r_H\nu)^{2ir_H\omega}e^{-\pi r_H\omega}\Gamma(-2ir_H\omega)$ and $\beta_{\omega\nu} = e^{-2\pi r_H\omega}\alpha_{\omega\nu}$. Then $|0\rangle$ with $a_{\nu}|0\rangle = 0$ has

$$\langle 0|b^{\dagger}_{\omega}b_{\omega'}|0
angle = rac{2\pi\delta(\omega-\omega')}{e^{\omega/T_H}-1}.$$

Let b_{ω} and b^{\dagger} be the operators for modes in region I and \tilde{b}_{ω} and $\tilde{b}_{\omega}^{\dagger}$ those for region II. The final state is $|0\rangle_{a} \sim \exp(\int_{0}^{\infty} d\omega/2\pi e^{-\omega/2T_{H}} b_{\omega}^{\dagger} \tilde{b}_{\omega}^{\dagger})|0\rangle_{b}$.

• The typical Hawking quanta has energy $T_H \sim 1/r_H \sim 1/GM$ so if the entire BH evaporates the number of quanta will be $\sim M/(1/GM) \sim GM^2$. So the entropy of the Hawking quanta goes from $0 \to GM^2$ and that of the BH goes from $GM^2 \to 0$.