
3/22/17 Lecture 18 outline

• Recall from last time:

E ↔ M, S ↔ A/4G, T ↔ κ/2π.

For a Schwarzschild black hole:

T =
κ

2π
=

1

8πGM
= 1.2× 1026K(

1g

M
) = 6.0× 10−6K(

M⊙

M
).

Introduce proper distance η by gηη = 1, find η =
√

r(r − rH) + rH cosh−1(
√

r/rH) ≈
2
√

rH(r − rH) near the horizon. Define ω = t/2rH and the metric near rH is

ds2 ∼ −η2dω2 + dη2 + r2HdΩ2.

Rotate to Euclidean time and avoid a conical singularity at the origin by giving iω a 2π

periodicity. Use eiS/h̄ → e−βH with τE/h̄ = β = 1/kT i.e. kT = h̄/τE . Here it gives

kT = h̄/8πGM .

• Hawking’s calculation and the closely related Unruh effect. A uniformly accelerated

observer in Minkowski space sees a thermal spectrum: T = a/2π.

Consider ds2 = −dt2 + dx2 and an observer with uniform acceleration: αt(τ) =

sinh(ατ), αx(τ) = cosh(ατ), which has
√
aµaµ = α. Motivates a coordinate change:

at = eaξ sinh(aη) and ax = eaξ cosh(aη), which covers region I with x > |t|. A constant

acceleration path has aη = ατ and aξ = ln(a/α) where α is the acceleration. So for α = a,

the path is η = τ , ξ = 0. The metric is ds2 = e2aξ(−dη2 + dξ2) Rindler space or wedge.

The Killing vector ∂η corresponds to a boost in the x direction and has norm given by

V = eaξ and there is a horizon at x = t with surface gravity κ = a. Write Rindler space

plane wave solutions in terms of eikξ−iωη . The original (t, x) plane corresponds to regions

I, II, III, and IV .

In Minkowski space we write φ =
∫

dk(akfk + a†kf
∗
k ) where fk is a plane wave with

positive frequency. In the Rindler coordinates we write

φ =

∫

dk(b
(I)
k g

(I)
k + b

(IV )
k g

(IV )
k + h.c.),

where g
(I)
k ∼ e−iωη+ikξ is a positive frequency solution in region I, which vanishes in region

IV , and g
(IV )
k is similar in region IV vanishing in region I. We quantize as usual for the

Minkowski vacuum has ak|0〉M = 0, whereas the Rindler vacuum has b
(I)
k |0〉R = b

(IV )
k |0〉R.
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Find (Carroll):

b
(±)
k =

1
√

2 sinh(πω/a)
(eπω/2ac±k + e−πω/2ac

(∓)†
−k ),

where ± refer to the regions ±x > 0 and c
(±)
k are annhiliation operators in terms of left

or right moving (x− ±t) modes and in the vacuum c
(±)
k |0〉M = 0. Then M 〈0|b†kbk|0〉M ∼

(e2πω/a − 1)−1, i.e. a thermal spectrum with T = a/2π.

• Hawking’s description. φ =
∫

dk(fkak + h.c.) where fk are positive frequency of

I−. Also φ =
∫

dk(pkbk + qkck + h.c.) where pk are purely outgoing, giving zero on

the horizon, and qk are purely incoming, giving zero on I+, both with positive frequency

where they are non-zero. Find pi =
∑

j(αijfj+βij f̄j) and qi =
∑

j(γijfj+ηij f̄j and hence

bi =
∑

j(ᾱijaj − β̄ija
†
j) and ci =

∑

j(γ̄ijaj − η̄ija
†
j). Take initial vacuum ai|0〉 = 0 and

then find that the outgoing mode has 〈0−|b†i bi|0−〉 =
∑

j |βij |2. Consider a wave equation

solution pω propagating backwards from I+ with zero Cauchy data on the event horizon.

Follow solution back to I−. Find this is determined in terms of κ

• Related to entanglement: trx<0|0〉〈0| = Z−1e−2πH , corresponding to T = 1/2π.

• Density matrix associated with region A, ρA = TrĀ|Ψ〈〉Ψ| and then S(A) =

−Tr(ρA log ρA). In AdS/CFT this can be computed from the Ryu Takayanagi formula,

S(A) = Area(Ã)/4G where Ã is the minimal surface in the bulk that gives A on the

boundary.

• Near the horizon, take r = rH + δ, δ ≡ ρ2/4rH , and X = ρ cosh(t/2rH) and

T = ρ sinh(t/2rH). Let U = T −X and V = T +X . Region 1 is U < 0, V > 0, region 2

is U > 0, V > 0 etc.

Infalling observer has dτ ∝ e−t/rHdt. Infalling observer has τ frequencies ν and

outside observer has t frequency modes ω. Consider 2d KG field and let u, v = t∓ r∗ with

r∗ = r + rH ln(r − rH). Expand φ =
∫

(aνe
−iνU + h.c.) or φ =

∫

(bωe
−iωu + h.c.). Then

bω =

∫

dν(αωνaν + βωνa
†
ν).

where αων = 2rH(ω/ν)1/2(2rHν)2irHωe−πrHωΓ(−2irHω) and βων = e−2πrHωαων . Then

|0〉 with aν |0〉 = 0 has

〈0|b†ωbω′ |0〉 = 2πδ(ω − ω′)

eω/TH − 1
.

Let bω and b† be the operators for modes in region I and b̃ω and b̃†ω those for region

II. The final state is |0〉a ∼ exp(
∫∞

0
dω/2πe−ω/2THb†ω b̃

†
ω)|0〉b.
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• The typical Hawking quanta has energy TH ∼ 1/rH ∼ 1/GM so if the entire BH

evaporates the number of quanta will be ∼ M/(1/GM) ∼ GM2. So the entropy of the

Hawking quanta goes from 0 → GM2 and that of the BH goes from GM2 → 0.
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