
3/21/17 Lecture 17 outline

• Recall from last time: Kerr black holes:

ds2 = −Σ−1(∆− a2 sin2 θ)dt2 − 2aΣ−1 sin2 θ(r2 + a2 −∆)dtdφ+

+Σ−1((r2 + a2)2 −∆a2 sin2 θ) sin2 θdφ2 + Σ∆−1dr2 + Σdθ2.

Here Σ = r2 + a2 cos2 θ and ∆ = r2 + a2 +Q2 − 2GMr and the gauge field is

Aµdx
µ = −QrΣ−1(dt− a sin2 dφ),

where Q is the electric charge, as measured by the flux through a sphere at infinity, and

Ma = J is the angular momentum (as measured through a large sphere at infinity). The

metric is t and φ independent, so it admits Killing vectorsKµ = ∂µ
t and Rµ = ∂µ

φ . The dtdφ

cross term means that it is stationary but not static, corresponding to the BHs rotation,

which frame-drags spacetime along with it.

• Compare the conformal diagrams of eternal Schwarzschild vs eternal Kerr Newmann.

• Continue from last time. Consider a massive particle on a geodesic in the Kerr

geometry with pµ = muµ. The conserved quantities associated with the Killing vectors

are

E = −Kµp
µ = m(1− 2GMr

Σ
)
dt

dτ
+

2GmMar

Σ

dφ

dτ
,

L = Rµp
µ = −2GMmar

Σ
sin2 θ

dt

dτ
+

m(r2 + a2)2 −m∆a2 sin2 θ

Σ
sin2 θ

dφ

dτ
.

• Extracting energy from a Kerr black hole. In a free falling frame, energy and

momentum conservation is pµin = pµout + pµBH . Use Kµ to get energies: Eout = Ein −EBH .

But if the particle going into the BH is inside the ergosphere, then KµK
µ = g00 > 0 and

EBH < 0. The outgoing particle can have more energy than the incoming one – it has

extracted energy from the ergosphere. Consider an observer inside the ergosphere with

uµ
obs = ut

obs(K
µ + ΩobsR

µ). They must measure a positive energy going into the BH, so

−(K + ΩobsR) · pBH ≥ 0. This gives EBH ≥ ΩobsLBH where LBH = mBHℓBH is the

angular momentum of the particle that fell into the black hole. Since Ωobs > 0, negative

EBH requires negative LBH , so the energy extraction also extracts angular momentum

from the BH. This is called the Penrose process. The black hole has δM = EBH and

δJ = LBH . We will see that the area of the black hole increases in the Penrose process,

even though energy and angular momentum are being extracted. This is a special case of
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the general black-hole area increase theorems of classical GR. This is the starting point for

black hole thermodynamics: black holes have an entropy S = A/4G, and the area-increase

theorem is then the 2nd law of thermodynamics. This was a starting point for Hawking’s

observation that black holes are quantumly hot, and radiate like a thermal blackbody with

a temperature TH .

• Field theory analog of the Penrose process: super-radiant scattering. Consider

scattering a wave of the form φ = ℜ(φ0(r, θ)e
−iωteimφ). If 0 < ω < mΩH , the transmitted

wave carries negative energy into the black hole, and the reflected wave thus has a larger

amplitude than the incoming wave. The energy current Jµ = TµνK
ν has average flux

through the horizon given by 〈Tµνχ
µKν〉 = 1

2
ω(ω −mΩH)|φ0|2.

• The area of the outer horizon, at r+ = GM
√
G2M2 − a2 is computed from the

induced metric, setting dr = dt = 0. The result is A =
∫
√

|γ|dθdφ = 4π(r2+ + a2). Define

(with J = Ma)

M2
irr ≡ A

16πG2
= 1

2
(M2 +

√

M4 − (J/G)2).

The change is

δMirr =
a

4GMirr

√
G2M2 − a2

(Ω−1
H δM − δJ),

and L(2) < E(2)/ΩH implies δJ < δM/ΩH , and hence δMirr > 0.

Write it as

δM =
κ

8πG
δA+ ΩHδJ,↔ dE = TdS − pdV

where κ is the surface gravity. Recall it is obtained from the Killing vector χ = Kµ+ΩHRµ

of the horizon

κ =
√

−1
2
(∇µχν)(∇µχν) =

√
G2M2 − a2

2GM(GM +
√
G2M2 − a2)

.

Black hole thermodynamics has

E ↔ M, S ↔ A/4G, T ↔ κ/2π.

Recall that, at the horizon for a stationary configuration, a Killing vector χµ is null,

and χµ∇µχ
ν = −κχν where κ is constant on the horizon. Recall that for a static observer

(consider a non-rotating BH for the moment) Kµ = V Uµ with V =
√

−KµKµ and

photons e.g. have ω2/ω1 = V1/V2 and the four-acceleration is aµ = Uσ∇σU
µ = ∇µ lnV ,

with magnitude a =
√
aµaµ = V −1

√

∇µV∇µV and then κ = V a is the acceleration at the

end of a string at infinity.
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• For a Schwarzschild black hole:

T =
κ

2π
=

1

8πGM
= 1.2× 1026K(

1g

M
) = 6.0× 10−6K(

M⊙

M
).

Introduce proper distance η by gηη = 1, find η =
√

r(r − rH) + rH cosh−1(
√

r/rH) ≈
2
√

rH(r − rH) near the horizon. Define ω = t/2rH and the metric near rH is

ds2 ∼ −η2dω2 + dη2 + r2HdΩ2.

Rotate to Euclidean time and avoid a conical singularity at the origin by giving iω a 2π

periodicity. Use eiS/h̄ → e−βH with τE/h̄ = β = 1/kT i.e. kT = h̄/τE . Here it gives

kT = h̄/8πGM .
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