3/21/17 Lecture 17 outline
e Recall from last time: Kerr black holes:
ds? = =X YA — a?sin? 0)dt? — 2aX " sin? O(r? + a® — A)dtdo+
+37H((r? + a?)? — Aa®sin® 0) sin? 0d¢? + SATLdr? 4+ $db?.
Here ¥ = r2 4+ a2 cos? 0 and A = 12 + a? + Q? — 2GMr and the gauge field is
Ay dat = —Qry~'(dt — asin® dg),

where () is the electric charge, as measured by the flux through a sphere at infinity, and
Ma = J is the angular momentum (as measured through a large sphere at infinity). The
metric is ¢ and ¢ independent, so it admits Killing vectors K* = 9. and R* = 8(‘; . The dtd¢
cross term means that it is stationary but not static, corresponding to the BHs rotation,
which frame-drags spacetime along with it.

e Compare the conformal diagrams of eternal Schwarzschild vs eternal Kerr Newmann.

e Continue from last time. Consider a massive particle on a geodesic in the Kerr
geometry with p* = mu#. The conserved quantities associated with the Killing vectors

are
2GMr @ 2GmMar @

E= K" —=m(l— ~bmiMar
up = ml )Y )dT N X dr’

2GMmar . o, dt  m(r?+a?)? —mAd’sin®0 . , do

L = Rupu = —T Sln2 0% + E Sln2 9%

e Extracting energy from a Kerr black hole. In a free falling frame, energy and
momentum conservation is p;,, = p’(fut + p%, - Use K* to get energies: Eyy = F;y, — Epg.
But if the particle going into the BH is inside the ergosphere, then K ,K" = goo > 0 and
Epy < 0. The outgoing particle can have more energy than the incoming one — it has
extracted energy from the ergosphere. Consider an observer inside the ergosphere with
uby o= ul, (K" + QupsRM). They must measure a positive energy going into the BH, so
—(K 4+ QupsR) - ppg > 0. This gives Egy > QupsLpy where Ly = mpplpy is the
angular momentum of the particle that fell into the black hole. Since Q.5 > 0, negative
FEpp requires negative Ly, so the energy extraction also extracts angular momentum
from the BH. This is called the Penrose process. The black hole has M = Epgy and
0J = Lgy. We will see that the area of the black hole increases in the Penrose process,

even though energy and angular momentum are being extracted. This is a special case of
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the general black-hole area increase theorems of classical GR. This is the starting point for
black hole thermodynamics: black holes have an entropy S = A/4G, and the area-increase
theorem is then the 2nd law of thermodynamics. This was a starting point for Hawking’s
observation that black holes are quantumly hot, and radiate like a thermal blackbody with
a temperature Thy.

e Field theory analog of the Penrose process: super-radiant scattering. Consider
scattering a wave of the form ¢ = R(¢o(r, 0)e~“e™?). If 0 < w < mQy, the transmitted
wave carries negative energy into the black hole, and the reflected wave thus has a larger
amplitude than the incoming wave. The energy current J* = T, K" has average flux
through the horizon given by (T, x*K") = w(w — mQ)|do|?.

e The area of the outer horizon, at ry = GM+/G2M?2 — a2 is computed from the
induced metric, setting dr = dt = 0. The result is A = [ \/Wdedqb = 47(r3 4 a®). Define
(with J = Ma)

A
2= = (M? + /M — 2).
wrr 167TG2 2( + (J/G> )
The change is
SM;yy = a Q' 6M — 5.7),

AGM;pr VG2 M?2 — a2
and L) < E® /Qy implies 6.J < §M/Qy, and hence 6 M;,., > 0.
Write it as

SM = 2 §A+ QuéJ, < dE = TdS — pdV
G

where k is the surface gravity. Recall it is obtained from the Killing vector x = K*+Q gy R*

of the horizon

VGZM? = 4?2
2GM(GM +VG2M? — a?)

k= /=5 (V) (Vi) =
Black hole thermodynamics has
E+~ M, S+ A/AG, T < k/2m.

Recall that, at the horizon for a stationary configuration, a Killing vector x* is null,
and x*V,x" = —kx” where & is constant on the horizon. Recall that for a static observer
(consider a non-rotating BH for the moment) K* = VU* with V = /=K, K* and
photons e.g. have ws/wy = V7 /V, and the four-acceleration is a, = UV, U" =V, InV,
with magnitude a = \/a,aF = V! \/W and then k = Va is the acceleration at the

end of a string at infinity.



e For a Schwarzschild black hole:

K 1
T = — = =
2 8nGM
Introduce proper distance n by gy, = 1, find n = /r(r —rg) + rgcosh™ (\/r/ry) ~

2\/rg(r — rg) near the horizon. Define w = ¢/2ry and the metric near ry is

1g o M
26 _ 6 ©
1.2 x 107K (77) = 6.0 x 107K (52).

ds* ~ —n?dw? 4 dn? 4 r3.dQ2.

Rotate to Euclidean time and avoid a conical singularity at the origin by giving iw a 27
periodicity. Use e*/" — e PH with 75/h = 8 = 1/kT ie. kT = h/7g. Here it gives
kT = h/8nGM.



