3/21/17 Lecture 17 outline

• Recall from last time: Kerr black holes:

$$
ds^{2} = -\Sigma^{-1}(\Delta - a^{2}\sin^{2}\theta)dt^{2} - 2a\Sigma^{-1}\sin^{2}\theta(r^{2} + a^{2} - \Delta)dtd\phi +
$$

+
$$
\Sigma^{-1}((r^{2} + a^{2})^{2} - \Delta a^{2}\sin^{2}\theta)\sin^{2}\theta d\phi^{2} + \Sigma\Delta^{-1}dr^{2} + \Sigma d\theta^{2}.
$$

Here $\Sigma = r^2 + a^2 \cos^2 \theta$ and $\Delta = r^2 + a^2 + Q^2 - 2GMr$ and the gauge field is

$$
A_{\mu}dx^{\mu} = -Qr\Sigma^{-1}(dt - a\sin^2 d\phi),
$$

where Q is the electric charge, as measured by the flux through a sphere at infinity, and $Ma = J$ is the angular momentum (as measured through a large sphere at infinity). The metric is t and ϕ independent, so it admits Killing vectors $K^{\mu} = \partial_t^{\mu}$ and $R^{\mu} = \partial_{\phi}^{\mu}$ ϕ^{μ} . The dtd ϕ cross term means that it is stationary but not static, corresponding to the BHs rotation, which frame-drags spacetime along with it.

• Compare the conformal diagrams of eternal Schwarzschild vs eternal Kerr Newmann.

• Continue from last time. Consider a massive particle on a geodesic in the Kerr geometry with $p^{\mu} = m u^{\mu}$. The conserved quantities associated with the Killing vectors are

$$
E = -K_{\mu}p^{\mu} = m\left(1 - \frac{2GMr}{\Sigma}\right)\frac{dt}{d\tau} + \frac{2GmMar}{\Sigma}\frac{d\phi}{d\tau},
$$

$$
L = R_{\mu}p^{\mu} = -\frac{2GMmar}{\Sigma}\sin^{2}\theta\frac{dt}{d\tau} + \frac{m(r^{2} + a^{2})^{2} - m\Delta a^{2}\sin^{2}\theta}{\Sigma}\sin^{2}\theta\frac{d\phi}{d\tau}.
$$

• Extracting energy from a Kerr black hole. In a free falling frame, energy and momentum conservation is $p_{in}^{\mu} = p_{out}^{\mu} + p_{BH}^{\mu}$. Use K^{μ} to get energies: $E_{out} = E_{in} - E_{BH}$. But if the particle going into the BH is inside the ergosphere, then $K_{\mu}K^{\mu} = g_{00} > 0$ and E_{BH} < 0. The outgoing particle can have more energy than the incoming one – it has extracted energy from the ergosphere. Consider an observer inside the ergosphere with $u_{obs}^{\mu} = u_{obs}^{t}(K^{\mu} + \Omega_{obs}R^{\mu})$. They must measure a positive energy going into the BH, so $-(K + \Omega_{obs}R) \cdot p_{BH} \geq 0$. This gives $E_{BH} \geq \Omega_{obs}L_{BH}$ where $L_{BH} = m_{BH} \ell_{BH}$ is the angular momentum of the particle that fell into the black hole. Since $\Omega_{obs} > 0$, negative E_{BH} requires negative L_{BH} , so the energy extraction also extracts angular momentum from the BH. This is called the Penrose process. The black hole has $\delta M = E_{BH}$ and $\delta J = L_{BH}$. We will see that the area of the black hole increases in the Penrose process, even though energy and angular momentum are being extracted. This is a special case of the general black-hole area increase theorems of classical GR. This is the starting point for black hole thermodynamics: black holes have an entropy $S = A/4G$, and the area-increase theorem is then the 2nd law of thermodynamics. This was a starting point for Hawking's observation that black holes are quantumly hot, and radiate like a thermal blackbody with a temperature T_H .

• Field theory analog of the Penrose process: super-radiant scattering. Consider scattering a wave of the form $\phi = \Re(\phi_0(r,\theta)e^{-i\omega t}e^{im\phi})$. If $0 < \omega < m\Omega_H$, the transmitted wave carries negative energy into the black hole, and the reflected wave thus has a larger amplitude than the incoming wave. The energy current $J^{\mu} = T_{\mu\nu}K^{\nu}$ has average flux through the horizon given by $\langle T_{\mu\nu}\chi^{\mu}K^{\nu}\rangle = \frac{1}{2}$ $\frac{1}{2}\omega(\omega-m\Omega_H)|\phi_0|^2.$

• The area of the outer horizon, at $r_{+} = GM\sqrt{G^{2}M^{2} - a^{2}}$ is computed from the induced metric, setting $dr = dt = 0$. The result is $A = \int \sqrt{|\gamma|} d\theta d\phi = 4\pi (r_+^2 + a^2)$. Define (with $J = Ma$)

$$
M_{irr}^2 \equiv \frac{A}{16\pi G^2} = \frac{1}{2}(M^2 + \sqrt{M^4 - (J/G)^2}).
$$

The change is

$$
\delta M_{irr} = \frac{a}{4GM_{irr}\sqrt{G^2M^2 - a^2}} (\Omega_H^{-1} \delta M - \delta J),
$$

and $L^{(2)} < E^{(2)}/\Omega_H$ implies $\delta J < \delta M/\Omega_H$, and hence $\delta M_{irr} > 0$.

Write it as

$$
\delta M = \frac{\kappa}{8\pi G} \delta A + \Omega_H \delta J, \leftrightarrow dE = T dS - p dV
$$

where κ is the surface gravity. Recall it is obtained from the Killing vector $\chi = K^{\mu} + \Omega_H R^{\mu}$ of the horizon

$$
\kappa = \sqrt{-\frac{1}{2}(\nabla_{\mu}\chi_{\nu})(\nabla^{\mu}\chi^{\nu})} = \frac{\sqrt{G^2M^2 - a^2}}{2GM(GM + \sqrt{G^2M^2 - a^2})}.
$$

Black hole thermodynamics has

$$
E \leftrightarrow M, \quad S \leftrightarrow A/4G, \quad T \leftrightarrow \kappa/2\pi.
$$

Recall that, at the horizon for a stationary configuration, a Killing vector χ^{μ} is null, and $\chi^{\mu}\nabla_{\mu}\chi^{\nu} = -\kappa\chi^{\nu}$ where κ is constant on the horizon. Recall that for a static observer (consider a non-rotating BH for the moment) $K^{\mu} = V U^{\mu}$ with $V = \sqrt{-K_{\mu}K^{\mu}}$ and photons e.g. have $\omega_2/\omega_1 = V_1/V_2$ and the four-acceleration is $a_\mu = U^\sigma \nabla_\sigma U^\mu = \nabla_\mu \ln V$, with magnitude $a = \sqrt{a_\mu a^\mu} = V^{-1} \sqrt{\nabla_\mu V \nabla^\mu V}$ and then $\kappa = V a$ is the acceleration at the end of a string at infinity.

• For a Schwarzschild black hole:

$$
T = \frac{\kappa}{2\pi} = \frac{1}{8\pi GM} = 1.2 \times 10^{26} K(\frac{1g}{M}) = 6.0 \times 10^{-6} K(\frac{M_{\odot}}{M}).
$$

Introduce proper distance η by $g_{\eta\eta} = 1$, find $\eta = \sqrt{r(r - r_H)} + r_H \cosh^{-1}(\sqrt{r/r_H}) \approx$ $2\sqrt{r_H(r-r_H)}$ near the horizon. Define $\omega = t/2r_H$ and the metric near r_H is

$$
ds^2 \sim -\eta^2 d\omega^2 + d\eta^2 + r_H^2 d\Omega^2.
$$

Rotate to Euclidean time and avoid a conical singularity at the origin by giving $i\omega$ a 2π periodicity. Use $e^{iS/\hbar} \to e^{-\beta H}$ with $\tau_E/\hbar = \beta = 1/kT$ i.e. $kT = \hbar/\tau_E$. Here it gives $kT = \hbar/8\pi GM$.