
3/15/17 Lecture 16 outline

• Recall from last time: Kerr black holes:

ds2 = −Σ−1(∆− a2 sin2 θ)dt2 − 2aΣ−1 sin2 θ(r2 + a2 −∆)dtdφ+

+Σ−1((r2 + a2)2 −∆a2 sin2 θ) sin2 θdφ2 + Σ∆−1dr2 + Σdθ2.

Here Σ = r2 + a2 cos2 θ and ∆ = r2 + a2 +Q2 − 2GMr and the gauge field is

Aµdx
µ = −QrΣ−1(dt− a sin2 dφ),

where Q is the electric charge, as measured by the flux through a sphere at infinity, and

Ma = J is the angular momentum (as measured through a large sphere at infinity). The

metric is t and φ independent, so it admits Killing vectorsKµ = ∂µ
t and Rµ = ∂µ

φ . The dtdφ

cross term means that it is stationary but not static, corresponding to the BHs rotation,

which frame-drags spacetime along with it.

For r ≫ M and r ≫ a, note that

ds2 ≈ (1− 2GM

r
)dt2 + (1 +

2GM

r
)dr2 + r2dΩ2 − 4Ma

d2
sin2 θ(rdφ)dt+ . . . .

Recall for gµν = ηµν+hµν with hµν small, that h00 = −2Φ, h0i ≡ wi etc andHi ≡ ǫijk∂hwk

is analogous to a magnetic field in that it leads to a ~̇p = E~v × ~H + . . . term, which here is

a rotational term ~̇p = ~Ω× ~p+ . . . with ~Ω pointing in the φ̂, i.e. ẑ direction.

The full Kerr metric exhibits several interesting locations:

(i) The place where g00 = 0 is called the stationary limit surface.

(ii) The places where grr = 0 are event horizons.

(iii) The places where Σ = 0 are singularities for M, a 6= 0.

As a warmup consider first Q = M = 0. Then the Kerr solution is simply Minkowski

space in ellipsoidal coordinates: x =
√
r2 + a2 sin θ cosφ, y =

√
r2 + a2 sin θ sinφ, z =

r cos θ. Then r = 0 is a two dimensional disk of radius a and its intersection with θ = π/2

is the ring at the boundary of this disk.

Now consider M 6= 0 and a 6= 0. Computing RµνρσR
µνρσ find that it is singular

at Σ = 0, i.e. at r = 0, θ = π/2, i.e. at the above-mentioned ring of radius a in the

z = 0 plane (orthogonal to the angular momentum). So the spinning spreads out the point

singularity of Schwarzschild into a ring singularity. The event horizons are at ∆ = 0. The

stationary limit surface is at ∆ = a2 sin2 θ, so it is outside of the event horizon and they
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touch at the N and S poles. The region between the event horizon and the stationary limit

surface is the ergosphere.

If Q2 + a2 > M2, there is no ∆ = 0 solution, hence a naked singularity. Can go

backwards in time and have closed timeline curves in that case by circling around the

singularity. According to the cosmic censorship conjecture, such black holes never form

from smooth physical configurations. So consider Q2 + a2 ≤ M2, which has horizons at

∆ = 0 i.e. r = r± = M ±
√
M2 −Q2 − a2, the outer and inner horizon. These are

coordinate singularities and the space-time can be extended past them. Spacetime can be

extended to negative r. For the negative r region, there are closed time-like curves at the

ring singularity, e.g. wind in φ: ds2 ≈ a2(1 + 2GM/r)dφ2 which can be negative for small

negative r. Since ∆ 6= 0 for r < 0, there are no horizons and naked singularities in that

asymptotic region.

Because Kerr is stationary but not static, the event horizons at r± are not Killing

horizons for the asymptotic time-translation Killing vector K = ∂t. The norm of Kµ is

KµK
µ = −Σ−1(∆ − a2 sin2 θ), so at the outer horizon KµK

µ = a2Σ−1 sin2 θ ≥ 0: it is

space like at the outer horizon, and null at the poles. The stationary limit surface is where

KµK
µ = 0, i.e. at (rs.l.s − GM)2 = G2M2 − a2 cos2 θ, which has rs.l.s. ≥ r+, touching

the outer horizon at the north and south poles. The region between rs.l.s. and r+ is the

ergosphere. Once inside the ergosphere, it is impossible to not rotate with the BH in the

φ direction, but you can still move either to or away from the event horizon.

The null vector at r = r+ is ℓµ = Kµ + ΩHRµ, with ΩH = a/(r2+ + a2) interpreted

as the angular velocity of the horizon itself. The null ℓµ are tangent vectors to the light

rays that form the horizon. These light rays are rotating with angular velocity ΩH ; this is

frame dragging.

• Consider a photon emitted in the φ direction at θ = π/2 has ds2 = 0 = gttdt
2 +

2gtφdtdφ+ gφφdφ
2, so

dφ

dt
= − gtφ

gφφ
±

√
(
gtφ
gφφ

)2 − gtt
gφφ

.

At the stationary limit surface the two solutions are dφ
dt

= 0 and dφ
dt

= a/(2G2M2 + a2),

corresponding to going against the rotation or with the rotation. The angular velocity of

the event horizon is ΩH = (dφ
dt
)−(r+) = a/(r2+ + a2).

Consider an observer who, with help from a rocket, tries to keep their r, θ, φ values

unchanging. In Schwarzschild, this can be done for r > 2GM . Now consider the case for

Kerr, trying to keep uµ
obs = (ut

obs, 0, 0, 0) with uµu
µ = −g00u

t
obs

2 = −1. The place where
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g00 = 0 defines the stationary limit surface, rsls. For r < rsls it is impossible to have

uobs with only time-like components, even with an arbitrarily powerful rocket. Inside this

region is the ergosphere, where uobs = ut
obs(1, 0, 0,Ωobs), rotating in the φ direction along

with the BH.

• Draw pictures of light fronts at different places in the Kerr geometry.

• Consider a geodesic orbit in the Kerr geometry, say at θ = π/2. For simplicity,

take qobj = QBH = 0. Thanks to the t and φ translation symmetry, there are conserved

quantities e = −K · u and ℓ = R · u, the energy and angular momentum per unit mass. It

turns out that there is another conserved quantity: a Killing tensor

Kµν = 2Σℓ(µnν) + r2gµν

where ℓµ = (r2 + a2)∆−1∂µ
t + a∆−1∂µ

φ + ∂µ
r and nµ = 1

2 (r
2 + a2)Σ−1∂µ

t + 1
2aΣ

−1∂µ
φ −

1
2
∆Σ−1∂µ

r so C = Kµνu
µuν is also a constant of the motion.

Take gµνu
µuν ≡ −κ with κ = 1 for massive orbiters and κ = 0 for massless. Then

1
2
(e2 − 1) = 1

2
(
dr

dτ
)2 + Veff ,

Veff = −κ
GM

r
+

ℓ2 − a2(e2 − κ)

2r2
− M(ℓ− ea)2

r3
.

Note that it is not ℓ → −ℓ symmetric: the effective potential differs whether the orbiter’s

rotation is aligned or anti-aligned with that of the BH. The sign of the potential helps to

avoid violating cosmic censorship, i.e. avoid having a > M , because particles with ℓ too

big can’t fall in.
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