
3/1/17 Lecture 14 outline

• Recall from last time: Trapped surface: a compact, two-dimensional, space like

surface such that θ on both sets of geodesics (ingoing and outgoing) orthogonal to T

are everywhere negative. The various singularity theorems connect trapped surfaces to

singularities. E.g. in the Schwarzschild black hole in region II all surfaces are trapped.

• Black hole no hair (classically) theorem: stationary, asymptotically flat solutions of

GR coupled to E&M that are nonsingular outside of the event horizon are fully specified

by gauge charges (not global symmetry charges). The Schwarzschild black hole is spec-

ified by M , which is related to the energy. Other gauge charges are electric charge and

angular momentum. The Reissner-Nordstrom (1918) black hole generalizes Schwarzschild

to include electric charge. The Kerr black hole (1963) includes instead angular momen-

tum. The Newmann et al solution (1965) includes both mass, electric charge, and angular

momentum.

• Hawking’s area theorem: assuming the weak energy condition (Tµνt
µtν ≥ 0 for all

time-like tµ) and cosmic censorship, the area of a future event horizon in an asymptotically

flat space-time is non-decreasing. Implies e.g. that black holes cannot bifurcate.

• Event horizon, as pictured in a Penrose diagram: a null hyper surface beyond which

timelike curves cannot escape to infinity.

Every event horizon Σ in a stationary, asymptotically flat space-time is a Killing

horizon for some Killing vector field, i.e. the Killing vector becomes null there. If the

space-time is static, this Killing vector field is simply Kµ = ∂µ
t . If the space-time is

stationary but not static the event horizon is the Killing horizon for Kµ + ΩHRµ where

Rµ is the rotational Killing field Rµ = ∂µ
φ and ΩH is some constant.

For asymptotically flat space-time, normalize Kµ such that KµK
µ(r → ∞) → −1.

For a static observer, Kµ = V (x)Uµ, where V = −
√

KµKµ. Recall the energy of a photon

is E = −pµK
µ and the frequency measured by an observer with Uµ is ω = −pµU

µ, so

ω = E/V .

Consider an observer who, with help from a rocket, tries to keep their spatial coor-

dinates unchanging. In Schwarzschild, this can be done for r > 2GM . Now consider the

case for Kerr, trying to keep uµ
obs = (ut

obs, 0, 0, 0) with uµu
µ = −g00u

t
obs

2 = −1. The place

where g00 = 0 defines the stationary limit surface, rsls. For r < rsls it is impossible to

have uobs with only time-like components, even with an arbitrarily powerful rocket. Inside
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this region is the ergosphere, where uobs = ut
obs(1, 0, 0,Ωobs), rotating in the φ direction

along with the BH.

A static observer hovering at fixed spatial coordinates has acceleration aµ =

Uσ∇σU
µ = ∇µ lnV . The acceleration magnitude is a =

√
aµaµ = V −1

√
∇µV∇µV .

The surface gravity at the event horizon is κ = V a =
√
∇µV∇µV . Picture a string from a

static object at the horizon connecting to an observer at infinity, then the surface gravity

is the acceleration of the end at infinity.

E.g. for Schwarzschild, Kµ = (1, 0, 0, 0), Uµ = ((1 − 2GM/r)−1/2, 0, 0, 0), V =√
1− 2GM/r, and then κ = 1/4GM . Bigger black hole has smaller surface gravity at the

horizon.

• Mass charge and spin. In E&M, ∇νF
µν = Jµ

e , the conserved electric charge is

Q = −
∫

Σ

d3x
√
γnµJ

µ
e ,

where γij is the induced metric on some space like surface Σ and nµ is a future-pointing

unit vector, and the minus sign is needed with these conventions. By Maxwell s equations

and Gauss’ law,

Q = −
∫

∂Σ

d2x
√

γ(2)nµσνF
µν .

Can likewise define magnetic charge P (if magnetic monopoles exist) by replacing Fµν →
1
2
ǫµνρσFρσ. In terms of forms, writing F = Fµνdx

µ ∧ dxν , can write

Q =

∫

∂Σ

∗F, P =

∫

∂Σ

F.

Now try to analogously define the energy. We already discussed a bit about how

energy is subtle in GR, because it is a gauge instead of a global charge. The first attempt

is via Jµ
T = KνT

µν , where Kµ is a time-like Killing vector field. This satisfies ∇µJ
µ
T = 0,

so can get a conserved energy via

ET =

∫

Σ

d3x
√
γnµJ

µ
T .

But this is no good, e.g. Tµν = 0 for a Schwarzschild black hole (except at the origin)

so this would give ET = 0. A better choice is Jµ
R = KνR

µν = 8πGKν(T
µν − 1

2
Tgµν).

By the Bianchi identity, ∇µR
µν = 1

2∇
νR and then using the Killing vector equation

∇(µKν) = 0 it follows that Jµ
R is conserved, ∇µJ

µ
R = 1

2Kν∇νR = 0, where the last identity

follows from a property of Killing vectors that you can prove as an exercise (Carroll):
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∇µ∇σK
ρ = Rρ

σµνK
ν which can be used to show that R does not change along a Killing

vector field. Using these properties of Killing vectors, show Jµ
R = ∇ν(∇µKν). This leads

to the Komar integral:

ER =
1

4πG

∫

Σ

d3x
√
γnµJ

µ
R =

1

4πG

∫

∂Σ

d2x
√
γ(2)nµσν∇µKν .

E.g. for Schwarzschild, have n0 = −(1 − 2GM/r)1/2 and σr = (1 − 2GM/r)−1/2 and

then Kµ = (1, 0, 0, 0) has nµσν∇µKν = −∇0Kr = −g00Γr
00K

0 = GM/r2, giving ER =

(4πG)−1
∫
d2Ωr2(GM/r2) = M . There is another definition of energy,

EADM =
1

16πG

∫

∂Σ

d2x
√
γ(2)σi(∂jh

j
i − ∂ih

j
j),

when the asymptotic metric is of the form gµν = ηµν +hµν , with hµν a small perturbation.

If hµν is time independent, then the Komar integral and the ADM energy agree.

Now define angular momentum for a system with rotational symmetry around say the

ẑ axis, i.e. a Killing vector R = ∂φ. In analogy with the above, take Jµ
φ = RνR

µν and

J = − 1

8πG

∫

∂Σ

d2x
√

γ(2)nµσν∇µRν ,

where Rν = (∂φ)
ν is the Killing vector.
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