3/1/17 Lecture 14 outline

e Recall from last time: Trapped surface: a compact, two-dimensional, space like
surface such that # on both sets of geodesics (ingoing and outgoing) orthogonal to T
are everywhere negative. The various singularity theorems connect trapped surfaces to
singularities. E.g. in the Schwarzschild black hole in region II all surfaces are trapped.

e Black hole no hair (classically) theorem: stationary, asymptotically flat solutions of
GR coupled to E&M that are nonsingular outside of the event horizon are fully specified
by gauge charges (not global symmetry charges). The Schwarzschild black hole is spec-
ified by M, which is related to the energy. Other gauge charges are electric charge and
angular momentum. The Reissner-Nordstrom (1918) black hole generalizes Schwarzschild
to include electric charge. The Kerr black hole (1963) includes instead angular momen-
tum. The Newmann et al solution (1965) includes both mass, electric charge, and angular
momentum.

e Hawking’s area theorem: assuming the weak energy condition (7),,t#t” > 0 for all
time-like ¢#) and cosmic censorship, the area of a future event horizon in an asymptotically
flat space-time is non-decreasing. Implies e.g. that black holes cannot bifurcate.

e Event horizon, as pictured in a Penrose diagram: a null hyper surface beyond which
timelike curves cannot escape to infinity.

Every event horizon ¥ in a stationary, asymptotically flat space-time is a Killing
horizon for some Killing vector field, i.e. the Killing vector becomes null there. If the
space-time is static, this Killing vector field is simply K* = 9i'. If the space-time is
stationary but not static the event horizon is the Killing horizon for K* + Qg R* where
R* is the rotational Killing field R, = Bg and (y is some constant.

For asymptotically flat space-time, normalize K,, such that K ,K*(r — oo) — —1.
For a static observer, K* = V (z)U", where V = —\/W . Recall the energy of a photon
is E = —p,K* and the frequency measured by an observer with U* is w = —p,U¥, so
w=FE/V.

Consider an observer who, with help from a rocket, tries to keep their spatial coor-
dinates unchanging. In Schwarzschild, this can be done for » > 2GM. Now consider the
case for Kerr, trying to keep u’, = (ul, ., 0,0,0) with u,u” = —goou’,,> = —1. The place
where ggg = 0 defines the stationary limit surface, rgs. For r < rgg it is impossible to

have uy,s with only time-like components, even with an arbitrarily powerful rocket. Inside
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this region is the ergosphere, where uyps = ul, (1,0,0,Qus), rotating in the ¢ direction
along with the BH.

A static observer hovering at fixed spatial coordinates has acceleration a* =
U°V,UF = VFInV. The acceleration magnitude is a = /a,aF = V‘H/W.
The surface gravity at the event horizon is k = Va = \/W . Picture a string from a
static object at the horizon connecting to an observer at infinity, then the surface gravity
is the acceleration of the end at infinity.

E.g. for Schwarzschild, K* = (1,0,0,0), U* = ((1 — 2GM/r)=1/2,0,0,0), V =
\/m, and then k = 1/4GM. Bigger black hole has smaller surface gravity at the
horizon.

e Mass charge and spin. In E&M, V, F* = J! the conserved electric charge is

Q = _/ dgxﬁnﬂ‘]g7
DY

where ;; is the induced metric on some space like surface 3 and n* is a future-pointing
unit vector, and the minus sign is needed with these conventions. By Maxwell s equations

and Gauss’ law,

Q= —/ d?z\/y@n,0, FH.
o

Can likewise define magnetic charge P (if magnetic monopoles exist) by replacing F* —

%e“”p(’Fpg. In terms of forms, writing ' = F,, dx" A dz¥, can write

Q= | x*F P:/ F.
o o

Now try to analogously define the energy. We already discussed a bit about how
energy is subtle in GR, because it is a gauge instead of a global charge. The first attempt
is via Jh = K, T*, where K" is a time-like Killing vector field. This satisfies V,JJ: = 0,

so can get a conserved energy via

ET:/dz)’xﬁnuJéﬁ.
>

But this is no good, e.g. 1), = 0 for a Schwarzschild black hole (except at the origin)
so this would give Ep = 0. A better choice is Ji = K,R*" = 8nGK, (T — %Tg‘“’).
By the Bianchi identity, V,RM" = %V”R and then using the Killing vector equation
V(.K,) = 0it follows that J} is conserved, V,Ji = 1 K, VYR = 0, where the last identity

follows from a property of Killing vectors that you can prove as an exercise (Carroll):
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V. VeK?f = Rf K" which can be used to show that R does not change along a Killing

opv

vector field. Using these properties of Killing vectors, show Ji = V,(V#K"). This leads

to the Komar integral:

1
Pan,dh = — d*z\/vPn,o, VFK".
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E.g. for Schwarzschild, have ng = —(1 — 2GM/r)'/? and o, = (1 — 2GM/r)~'/? and
then K* = (1,0,0,0) has n,0,V¥K" = —V'K" = —¢"T; K* = GM/r?, giving Er =
(47G)~! [ d?*Qr?*(GM/r?) = M. There is another definition of energy,
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EADM = d21’ V(Q)Ji(ﬁjhg — 6Zh§),
when the asymptotic metric is of the form g, = 9, + hy,, with hy, a small perturbation.
If h,, is time independent, then the Komar integral and the ADM energy agree.

Now define angular momentum for a system with rotational symmetry around say the

Z axis, i.e. a Killing vector R = 0¢. In analogy with the above, take J = R, R** and

1
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where R” = (0p)" is the Killing vector.



