
2/27/17 Lecture 13 outline

• Recall from last time: the Schwarzschild solution in Eddington Finkelstein coordi-

nates, t = v − r − 2GM log | r
2GM − 1|. Then the metric becomes

ds2 = −

(

1−
2GM

r

)

dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2).

Schwarzschild time t ends at the horizon, but the coordinate v keeps on going, just like

the proper time of an infalling observer. (Proper time is coordinate independent.) The

horizon, r = 2GM , v = constant, is a null surface.

Kruskal coordinates: X2 − T 2 > −1 and

(−1 + r/2GM)er/2GM = X2 − T 2, t/2GM = ln(
T +X

X − T
).

ds2 = 32
M3er/2GM

r
(−dT 2 + dX2) + r2d2Ω2.

Regions I,II, III, IV in (T,X) plane.

• Now discuss non-eternal black holes. Then regions III and IV are not present.

Consider dust (pressureless matter) falling in Schwarzschild geometry: the geodesic

equation gives r(τ) = (3/2)2/3(2GM)1/3(τ∗ − τ)2/3. Continue via v(r) to r < 2GM and

find, once horizon is passed, matter hits r = 0 in proper time δτ = 4GM/3.

Letting r = R(t) on the surface of the star,

ds2 =

[

(1−
2GM

R
)− (1−

2GM

R
)Ṙ2

]

dt2 +R2dΩ2, Ṙ ≡ dR/dt.

Spherical symmetry implies dΩ2 = 0 for a point on the surface, and zero pressure implies

ds2 = −dτ2. Conservation of energy gives e = (1− 2GM
R ) dt

dτ , so one obtains

Ṙ2 = e−2(1−
2GM

R
)2(

2GM

R
− 1 + e2),

with e < 1 for gravitationally bound matter. Plotting Ṙ2 vs R, there is a local zero at

R = 2GM . On the other hand, using d
dt = (dt/dτ)−1 d

dτ ,

(

dR

dτ

)2

= (1− e2)((Rmax/R)− 1).
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For a collapsing star, we only plot the diagram outside of the star. Looks like

Minkowski space for early t, with a surface of the star plotted. Then get r = 0 singu-

larity intersecting I+ inside of place where r = 2GM goes from being a time-like surface

to being a null surface. So r = 0 continues from being the vertical line of the Minkowski

diagram into being the horizontal line at the top of the diagram, ending at the point (two-

sphere) i+ where it intersects I+. Note how for r < 2GM the future horizon is the r = 0

singularity (ouch).

• Black holes vs Naked singularities. The r = 0 singularity in region II is behind the

horizon. No signal from there can reach outside at future infinity, i.e. I+. On the other

hand, the r = 0 singularity in region III can send signals to I+. That is called a naked

singularity, not cloaked by a horizon.

The M < 0 Schwarzschild solution, which also solves Einstein’s equations, also has

a naked singularity at r = 0. It’s Penrose diagram looks like Minkowski space-time, but

with r = 0 an actual singularity. Light rays can get to I+ from r = 0, so it is a naked

singularity.

Another example of a Penrose diagram with a naked singularity is a variant of that of

a collapsing star, but where the r = 0 singularity at the top is drawn as a vertical extension

of the r = 0 region of Minkowski for t > some critical time, like patching together M < 0

Schwarzschild with Minkowski space.

Cosmic censorship conjecture ”Naked singularities cannot form from gravitational

collapse in an asymptotically flat space-time that is non-singular on some initial space like

Cauchy hyper surface.” Proving this conjecture is a major unsolved problem in GR. (In

Carroll, includes the restriction that the dominant energy condition is satisfied i.e. the

weak energy condition Tµνt
µtν ≥ 0 for all time-like tµ and the additional requirement that

Tµνtµ is non-space-like; for a perfect fluid, ρ ≥ |p| vs the WEC ρ > 0 and ρ+ p ≥ 0.)

•Raychaudhuri’s equation: consider a bunch of nearby time-like geodesics, param-

eterized by proper time τ . Let ξµ(x) be unit tangent vectors to these geodesics, ξµξµ = −1.

Then Bµν = ∇νξµ satisfies Bµνξ
µ = Bµνξ

ν = 0, i.e. it is purely spatial. If ηµ is pic-

tured as being orthogonal to the geodesic family, with Lξη
µ = 0, then it follows that

ξµ∇µη
ν = ηµ∇µξ

ν = Bµ
νη

ν . Let hµν ≡ gµν + ξµξν , interpreted as the spatial metric. The

expansion, shear, and twist of the congruence of geodesics are then

θ ≡ Bµνhµν , σµν ≡ B(µν) −
1

3
θhµν , ωµν = B[µν].
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Raychaudhuri’s equation follows from taking ξλ∇λBµν = −Bλ
νBµλ + Rκ

λνµξ
λξκ (which

follows from the derivative of the geodesic equation, recalling geodesic deviation), and

taking the trace:

dθ

dτ
= ξµ∇µθ = −

1

3
θ2 − σµνσ

µν + ωµνω
µν −Rµνξ

µξν.

Using Einstein’s equations the last term is −8πG[Tµνξ
µξν + 1

2
Tµ
µ ], and the strong energy

condition is the (conjecture) that the term in square brackets is always non-negative. Then

the last term in dθ/dτ is negative (or zero), which can be interpreted as the attraction of

gravity. If the geodesics are chosen such that ωµν = 0 then it follows that

dθ

dτ
+

1

3
θ2 ≤ 0 →

d

dτ
θ−1 ≥

1

3
.

Then

θ−1(τ) ≥ θ−1
0 +

1

3
τ.

If θ0 < 0, i.e. the congruence is initially converging, then θ−1 will go through zero in

τ ≤ 3/|θ0|. This means there is a singularity in the congruence, like a caustic, but not

necessarily a singularity in space-time. It can happen in Minkowski space. But it is a

starting point for eventually proving singularity theorems.

• Trapped surface: a compact, two-dimensional, space like surface such that θ on

both sets of geodesics (ingoing and outgoing) orthogonal to T are everywhere negative.

The various singularity theorems connect trapped surfaces to singularities. E.g. in the

Schwarzschild black hole in region II all surfaces are trapped.

• Black hole no hair (classically) theorem: stationary, asymptotically flat solutions of

GR coupled to E&M that are nonsingular outside of the event horizon are fully specified

by gauge charges (not global symmetry charges). The Schwarzschild black hole is spec-

ified by M , which is related to the energy. Other gauge charges are electric charge and

angular momentum. The Reissner-Nordstrom (1918) black hole generalizes Schwarzschild

to include electric charge. The Kerr black hole (1963) includes instead angular momen-

tum. The Newmann et al solution (1965) includes both mass, electric charge, and angular

momentum.

3


