2/27/17 Lecture 13 outline

e Recall from last time: the Schwarzschild solution in Eddington Finkelstein coordi-

nates, t = v —r — 2GM log | 5577 — 1|. Then the metric becomes
2GM
ds? = — (1 — T) dv? 4 2dvdr + r*(d6? + sin® 0d¢?).

Schwarzschild time t ends at the horizon, but the coordinate v keeps on going, just like
the proper time of an infalling observer. (Proper time is coordinate independent.) The
horizon, »r = 2G M, v = constant, is a null surface.

Kruskal coordinates: X2 — T2 > —1 and

T+ X
X-T

(=14 7r/2GM)e™/?M = X2 7% {/2GM = In( ).

MSer/ZGM

ds® = 32 (—dT? + dX?) + r2d*Qs,.

r
Regions LII, III, IV in (7, X) plane.
e Now discuss non-eternal black holes. Then regions /1] and IV are not present.
Consider dust (pressureless matter) falling in Schwarzschild geometry: the geodesic
equation gives 7(7) = (3/2)%/3(2GM)"/3(r, — 7)?/3. Continue via v(r) to r < 2GM and
find, once horizon is passed, matter hits 7 = 0 in proper time é7 = 4GM /3.

Letting r = R(t) on the surface of the star,

ds? = [(1— QGTM) —(1- QC"TM)R2 dt* + R?dQ?, R =dR/dt.

Spherical symmetry implies d2?> = 0 for a point on the surface, and zero pressure implies

ds? = —dr?. Conservation of energy gives e = (1 — QGTM)C%, so one obtains
. 2GM , 2GM
R2 — —2 1— 2 -1 2
€ ( R ) ( R + € )7

with e < 1 for gravitationally bound matter. Plotting R? vs R, there is a local zero at
R =2GM. On the other hand, using % = (dt/dr)~'4

dr’

(2_13)2 — (1= €)((Rmaa/R) — 1).
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For a collapsing star, we only plot the diagram outside of the star. Looks like
Minkowski space for early t, with a surface of the star plotted. Then get r = 0 singu-
larity intersecting Z* inside of place where r = 2GM goes from being a time-like surface
to being a null surface. So r = 0 continues from being the vertical line of the Minkowski
diagram into being the horizontal line at the top of the diagram, ending at the point (two-
sphere) iy where it intersects ZT. Note how for r < 2GM the future horizon is the r = 0
singularity (ouch).

e Black holes vs Naked singularities. The r = 0 singularity in region II is behind the
horizon. No signal from there can reach outside at future infinity, i.e. Z7. On the other
hand, the r = 0 singularity in region III can send signals to Z*. That is called a naked
singularity, not cloaked by a horizon.

The M < 0 Schwarzschild solution, which also solves Einstein’s equations, also has
a naked singularity at » = 0. It’s Penrose diagram looks like Minkowski space-time, but
with 7 = 0 an actual singularity. Light rays can get to Z* from r = 0, so it is a naked
singularity.

Another example of a Penrose diagram with a naked singularity is a variant of that of
a collapsing star, but where the r = 0 singularity at the top is drawn as a vertical extension
of the r = 0 region of Minkowski for ¢ > some critical time, like patching together M < 0
Schwarzschild with Minkowski space.

Cosmic censorship conjecture ” Naked singularities cannot form from gravitational
collapse in an asymptotically flat space-time that is non-singular on some initial space like
Cauchy hyper surface.” Proving this conjecture is a major unsolved problem in GR. (In
Carroll, includes the restriction that the dominant energy condition is satisfied i.e. the
weak energy condition 7),,t#t” > 0 for all time-like ¢# and the additional requirement that
TH¥t,, is non-space-like; for a perfect fluid, p > |p| vs the WEC p > 0 and p+p > 0.)

¢ Raychaudhuri’s equation: consider a bunch of nearby time-like geodesics, param-
eterized by proper time 7. Let £#(x) be unit tangent vectors to these geodesics, £/, = —1.
Then B,, = V,§, satisfies B,,{* = B,,£¥ = 0, i.e. it is purely spatial. If n# is pic-
tured as being orthogonal to the geodesic family, with Len# = 0, then it follows that
EHV Y =0V, Y = B¥ 0. Let hyy = g +§,60, interpreted as the spatial metric. The
expansion, shear, and twist of the congruence of geodesics are then
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Raychaudhuri’s equation follows from taking SAVABW = —BAVB,M + R’;Vué"f,{ (which
follows from the derivative of the geodesic equation, recalling geodesic deviation), and

taking the trace:

do 1 2 v v v

e =¢'V,0 = —59 — 0" +wy " — R, EHEY.
Using Einstein’s equations the last term is —87G[T},,§*Y + %Tlﬁ‘], and the strong energy
condition is the (conjecture) that the term in square brackets is always non-negative. Then
the last term in df/dr is negative (or zero), which can be interpreted as the attraction of

gravity. If the geodesics are chosen such that w,, = 0 then it follows that

o 1, d. 1
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Then

1
9_1(7) > 90_1 + gT.

If §p < 0, i.e. the congruence is initially converging, then #~! will go through zero in
7 < 3/|0g]. This means there is a singularity in the congruence, like a caustic, but not
necessarily a singularity in space-time. It can happen in Minkowski space. But it is a
starting point for eventually proving singularity theorems.

e Trapped surface: a compact, two-dimensional, space like surface such that 6 on
both sets of geodesics (ingoing and outgoing) orthogonal to T are everywhere negative.
The various singularity theorems connect trapped surfaces to singularities. E.g. in the
Schwarzschild black hole in region II all surfaces are trapped.

e Black hole no hair (classically) theorem: stationary, asymptotically flat solutions of
GR coupled to E&M that are nonsingular outside of the event horizon are fully specified
by gauge charges (not global symmetry charges). The Schwarzschild black hole is spec-
ified by M, which is related to the energy. Other gauge charges are electric charge and
angular momentum. The Reissner-Nordstrom (1918) black hole generalizes Schwarzschild
to include electric charge. The Kerr black hole (1963) includes instead angular momen-
tum. The Newmann et al solution (1965) includes both mass, electric charge, and angular

momentum.



