
2/22/17 Lecture 12 outline

• Recall from last time: the Schwarzschild solution is the unique solution of Einstein’s

equations in vacuum with spherical symmetry:

ds2 = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2 + r2dΩ2.

The object is a black hole of its radius has Robject ≤ RS = 2GM/c2. For the sun,

GMsun/c
2 = 1.48km, so the sun would be a black hole if all its mass were compressed

into a radius smaller than ∼ 3km. A planet out at Re could continue rotating around

the black hole on the same orbit as if it were a normal star – things only get bizarre on

distances ∼ Rs = 2GM/c2. As we said last time, Consider null, radial geodesics, see they

have dt/dr = ±(1 − 2GM
r ), so the slope of the light cones in the (r, t) plane close up at

r = RS = 2GM . A light ray just outside that radius seems to never get there, but this is

an illusion of the coordinate system.

Let’s sit well outside RS and drop our friend C3P0 into the horizon, and he’s going

to send messages back to us. Give him ℓ = 0, so Veff (r) = 1

2
ǫ − ǫGM/r and ǫ = 1.

Take him initially at r = r0 at t = t0 Then we have dt
dτ

= e(1 − 2GM/r)−1 and dr
dτ

=

−
√

e2 − 2Veff (r), where e = pµK
µ is the conserved energy per unit mass associated with

the time-like Killing vector. At r = r0, dt/dτ = 1/
√

1− v20 = 1. So e = 1− 2GM/r0. The

proper time to go from r0 to r1 is then

∆τC3P0 =

∫ r1

r0

dr
dr
dτ

= −
∫ r1

r0

dr√
e2 − 1 + 2GM

r

.

The coordinate time is

∆t =

∫ r1

r0

dτ
dt

dτ
= −

∫ r1

r0

dr e

(1− 2GM
r )

√
e2 − 1 + 2GM

r

.

If we started him at r ≈ ∞, then e = 1, and the proper time needed to go from r1 to r2 is

∆τC3PO = −
∫ r2

r1

√
r

2GM
=

2

3
√
2GM

r3/2|r1r2 .

From any finite r1, hit r2 = 2GM in a finite proper time, but coordinate time ∆t → ∞ for

r2 → RS. Also, the time that we see for the signals to get to us is ∆τUS → ∞. It seems

to us that he never gets to the horizon.
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• From the perspective of someone at r = ∞, the horizon is a special place. But

from the perspective of someone falling in, nothing too special happens there. There are

extreme tidal forces on length scales ∼ GM/c2, but if we imagine a supermassive black

hole, this is a huge length scale and as long as the infalling observer is much smaller than

that scale, they don’t notice anything too special as they get too, and cross the horizon.

• Trade the original Schwarzschild time t for v, defined by t = v−r−2M log | r
2M −1|,

where we use G = 1 units. Then the metric becomes

ds2 = −
(
1− 2M

r

)
dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2).

This is the same Schwarzschild geometry, but in the Eddington-Finkelstein coordinates.

The geometry and physics are unchanged, only the names of the coordinates have been

altered to make the physics clearer.

Let’s look at the radial light cones in this coordinate system: −(1− 2M
r
)dv2+2dvdr =

0, so we can take v =constant, i.e. dv
dr = 0, which is an ingoing light ray since increasing t

means decreasing r for v =constant. Another solution is −(1− 2M
r )dv + 2dr = 0, so this

null curve has dv
dr

= 2(1− 2GM
r

)−1, or integrating, v− 2(r+2GM log | r
2M

− 1|) =constant.

This light ray is outgoing for r > 2GM , so it’s the other side of the light cone. But for

r < 2GM it’s also ingoing. Plot what’s happening in the (r, v) plane. The entire light cone

has been tilted, to point in toward the black hole. Uh-oh... no escape! And the horizon,

r = 2GM , v = constant, is actually a null surface. The fact that both light cones point to

smaller r for r < 2GM means that r < 2GM surfaces are “trapped”: since nothing can go

faster than light, everything moves inward towards r = 0. We’ll later mention singularity

theorems, which connect trapped surfaces to singularities.

• Let t̃ ≡ v − r and plot what happens for a collapsing star in the (r, t̃) plane.

• Illustrate a fake, coordinate singularity: consider Minkowski space, restrict to t > 0.

The space t < 0 is still there, but we’ll pretend that the coordinate t doesn’t cover it

anymore, it just ends. But the space is fine, we just need to continue past where our bad

coordinate ends. Can make it more obscure, but still the same story, by taking t → 1/t

now, get ds2 = −dt2/t4 + dx2.

Another example that you’ve seen in a HW is Rindler space, ds2 = −x2dt2 + dx2.

Geodesics end in a finite proper time at x = 0. Is that a bad point? No: by a coordinate

transformation ds2 = −dT 2 + dX2, it’s just Minkowski space, and the original spacetime

is in the wedge |X | > T . Just need to continue to all X and T , and no problem.
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• Schwarzschild black hole in Eddington Finkelstein coordinates, t = v − r −
2GM log | r

2GM − 1|. Then the metric becomes

ds2 = −
(
1− 2GM

r

)
dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2).

Schwarzschild time t ends at the horizon, but the coordinate v keeps on going, just like

the proper time of an infalling observer. (Proper time is coordinate independent.)

The horizon, r = 2GM , v = constant, is a null surface.

• Let t̃ ≡ v − r and plot what happens for a collapsing star in the (r, t̃) plane.

An outside observer sees the collapse only asymptotically, and the escaping light

becomes increasingly redshifted. Consider light emitted at radius rE , and received at a

distant radius rR and at time tR, get −4M log( rE
2M −1) ≈ tR−rR. Using ωR = −(uobs)µk

µ
γ

and ωE = −(ustar)µk
µ
γ , get ωR ∼ ωEe

−tR/4M .

• Matter inside r = 2GM necessarily hits r = 0, and it happens in finite proper time,

∆τ =
1√

2GM

2

3
r3/2|2GM

0 =
2

3
(2GM).

• Kruskal coordinates: X2 − T 2 > −1 and

(−1 + r/2GM)er/2GM = X2 − T 2, t/2GM = ln(
T +X

X − T
).

ds2 = 32
M3er/2GM

r
(−dT 2 + dX2) + r2d2Ω2.

Regions I,II, III, IV in (T,X) plane.

• The corresponding Penrose diagram can be found on the cover of Townsend’s notes.

Again regions I, II, III, IV. In region 1, r > 2GM , the region outside of some r > r0 > 2GM

looks similar to Minkowski space, with r = r0 intersecting i− and i+ in the infinite past

and future, null boundaries I− and I+, which meet at i0. Note that observers at e.g.

I+ don’t see any difference from Minkowski space, and can’t see the (null) horizon. The

difference from Minkowski space is that there is the additional region II.

For 0 < r < 2GM , in region II, it looks a bit like the Penrose diagram of Minkowski

space, but turned on its side. There is a space like singularity at r = 0 that meets i+

at the end of the null horizon at r = 2GM . Regions III and IV are white-hole copies of

regions II and I. All r = constant hyper surfaces end at i+.

Pick a hypersurface of constant time, e.g. T = 0, and draw an embedding diagram

of the curvature. Get a wormhole tube connecting two exterior regions. This is called the
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Einstein Rosen (1935) bridge, discovered by Ludwig Flamm in 1916. In 1962 Wheeler and

Robert Fuller showed it is unstable and non-traversable. Using exotic hypothetical matter

(e.g. violating various of the positive energy conditions) one can (possibly) find traversable

wormholes.

• Now discuss non-eternal black holes. Then regions III and IV are not present.

Brief detour on solving Einstein’s equations in the star: take Tµν to be the perfect fluid

form, with pressure p = p(r) and energy density ρ = ρ(r). The metric form is spherically

symmetric and feeds back into the r dependence of the pressure and density via the stress-

tensor conservation equation. This leads to the Tolman-Oppenheimer-Volkoff equation of

hydrostatic equilibrium (using G = 1 units)

dp

dr
= −(p+ ρ)

m(r) + 4πr2p

r(r− 2m(r))
.

For p ≪ ρ, m(r) ≪ r it reduces to the Newtonian equilibrium equation. Qualitatively,

find that for fixed ρ the pressure p is greater in GR than in Newtonian theory. E.g. for

ρ = ρ0 a constant get pNewtonian(r) = 2

3
πρ20(R

2 − r2) and (Schwarzschild 1916)

pGR(r) = ρ0

[ √
1− 2GM/R −

√
1− 2GMr2/R3

√
1− 2GMr2/R3 − 3

√
1− 2GM/R

]
.

Note the pressure at r = 0 becomes infinite if M ≥ 4R/9G: such stars cannot exist in

GR. Instead, they collapse to a black hole. Can plot M vs R and see that, as R decreases,

the central ρc goes up to a maximum (white dwarfs, Chandrsekhar maximum, 1939), then

it becomes unstable and M decreases with decreasing R until the local minimum where

neutron stars form. Then the density and M goes back to increasing with decreasing R

until the point where black holes form.

• Consider dust (pressureless matter) falling in Schwarzschild geometry: the geodesic

equation gives r(τ) = (3/2)2/3(2GM)1/3(τ∗ − τ)2/3. Continue via v(r) to r < 2GM and

find, once horizon is passed, matter hits r = 0 in proper time ∆τ = 4GM/3.
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