
2/15/17 Lecture 11 outline

• Recall from last time: the Schwarzschild solution is the unique solution of Einstein’s

equations in vacuum with spherical symmetry:

ds2 = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2 + r2dΩ2

The Ricci tensor vanishes for Schwarzschild, but the Riemann tensor does not, e.g.

RµνρσRµνρσ =
48G2M2

r6
.

We see that r = 0 is really a singularity whereas r = Rs is not a real singularity.

The fact that the metric is static and spherically symmetric implies corresponding

Killing vectors. For objects on geodesics, the 4-momentum contracted with the Killing

vectors leads to the conserved energy and angular momentum.

Kµ = δµt = (1, 0, 0, 0). Get

H → ∂t → Kµ = (−(1− 2GM

r
), 0, 0, 0).

Lz → ∂φ → Lµ = (0, 0, 0, r2 sin2 θ).

Taking θ = π/2, the conserved quantities pµV
µ are

e = (1− 2GM

r
)
dt

dλ
, ℓ = r2

dφ

dλ
.

For massive particles, these are actually E/m and Lz/m.

• If the observer is stationary only u0
obs 6= 0, and is given by −g00(u

0
obs)

2 = −1, so

uµ
obs = (−g00)

−1/2Kµ, and thus Êobj;obs = eobj(−g00)
−1/2. Now eobj is a constant, but g00

depends on r, so a stationary observer at fixed r measures Eobj,obs depending on r. At

r → ∞, g00 → −1, so eobj = Eobj,∞, the energy observed by an observer at infinity. To

summarize,

Eobj,obs(r) = Eobj,∞(1− 2GM

r
)−1/2, Êobj,∞ ≡ e

This applies whether the observer is measuring the energy of an apple or a photon.

For photons, it implies the gravitational redshift

ωγ(r) = ωγ(∞)(1− 2GM

r
)−1/2.
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Therefore, a stationary observer at radius r1 will measure the photon as having frequency

ω1 = ω(r1) and another at radius r2 will measure it as having frequency ω2 = ω(r2), with

ω2

ω1

=

(
1− 2GM/r1
1− 2GM/r2

)1/2

.

E.g. for r ≫ 2GM this gives ω2/ω1 ≈ 1 + Φ1 −Φ2, which is what we saw before from the

rocket picture. This formula makes sense for r > 2GM . A photon starting at r = 2GM

would be redshifted to zero frequency by the time it gets to infinity – in other words, it

can’t make it out.

We can also use this to determine the escape velocity needed for a massive object,

starting at fixed r, to make it to infinity. (For massless objects, there’s no notion of escape

velocity – it can always make it to infinity from any r > 2GM . For r ≤ 2GM , the light

doesn’t escape, as we saw from the redshift formula. To make it to infinity, need e = 1, so

the observer at fixed r needs to see the object as having

Êobj,obs,esc = (1− 2GM

r
)−1/2 ≡ (1− V 2

esc/c
2)−1/2,

so Vesc =
√

2M/R, coincidentally the same as in Newtonian mechanics. For r → 2GM ,

get Vesc → c.

• Back to the geodesic equations. Use constants e, ℓ, and also u · u = −ǫ, where

ǫ ≡ 1 for massive objects and ǫ ≡ 0 for massless ones. Conservation of angular momentum

implies that orbits lie in a plane. E.g. if the particle is moving with dφ/dτ at an instant,

then ℓ = 0 for all time. Instead take θ = π/2 and uθ = 0, and it remains so for all time.

The radial geodesic equation leads to

1
2
(
dr

dλ
)2 + Veff (r) =

1
2
E2,

Veff (r) =
1
2
ǫ− ǫ

GM

r
+

L2

2r2
− GML2

r3
,

with ǫ ≡ −gµν
dxµ

dλ
dxν

dλ so ǫ = 1 for a massive particle with λ = τ and ǫ = 0 for a massless

particle. For a massive object we can multiply the above by m and use L = ℓm to make

the first two terms look familiar. The first term is the Newtonian potential, there only for

massive objects. The second term is the angular momentum barrier, there for both massive

and massless objects. The third term has γGR = 1, and γNewtonian = 0;since its ∼ 1/r3

its negligible away from the origin but it dominates for sufficiently small r. It replaces the

infinite centrifugal barrier of Newtonian mechanics with a barrier of finite height.
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• Draw pictures for timelike (massive) and null (massless) cases, compare / contrast

with Newtonian case. For a massive object, the shape of Veff (r) depends on the size of ℓ.

For a massless object, ℓ affects only the overall scale size of Veff (r), not its shape.

• Look for circular orbits, dV/dr = 0: ǫMGr2c − ℓ2rc + 3GML2γ = 0. For massless

case, ǫ = 0, no solution for γ = 0, but for γ = 1 get rc = 3GM . This is a local maximum,

unstable to perturbations. For the massive case, ǫ = 1, get

rc =
ℓ2 ±

√
ℓ4 − 12GM2ℓ2

2GM
.

For ℓ2 > 12GM2, the inner one is unstable and the outer one is stable. For ℓ ≫ 1 get

rc ≈ ℓ2/GM , which is the stable Newtonian result, and rc = 3GM , which is unstable.

For ℓ2 = 12GM2, there is only 1 orbit, at rc = 6GM . This is the smallest possible

stable orbit. For ℓ2 < 12GM2, there are no extrema of Veff , the potential just slides down,

down, down to the singularity at r = 0, goodbye.

• Consider the null case. The minimum e needed to climb the barrier is given

by 1
2
e2 = Veff (r = 3GM) = ℓ2/2(27)(GM)2, or ℓ2/e2 = 27(GM)2. At infinity, we

have ℓ = be, where b is the impact parameter. To see that note that, at infinity,

ℓ/e = r2 dφ
dλ

/(1 − 2GM
r

) dt
dλ

→ r2dφ/dt and so φ ≈ b/r, with dr/dt ≈ −1. So we see

that light with impact parameter less than bc = 33/2GM is captured. The capture cross

section is σc = 27π(GM)2.

• Study precession of the perihelion + deflection of light, multiplying the radial equa-

tion by (dλ/dφ)2 = r4/ℓ2 to convert (dr/dλ)2 there into (dr/dφ)2:

(
dr

dφ
)2 + 2

r4

ℓ2
Veff (r) =

r4

ℓ2
e2.

So

∆φ =

∫
dr

dφ

dr
=

∫
dr

ℓ

r2
1√

e2 − 2Veff (r)
.

Veff (r) =
1
2
ǫ− ǫGM

r
+

ℓ2

2r2
− GMγℓ2

r3
.

For an orbit, between the inner and outer turning points (the zeros of e2 = 2V (r)), get

∆φ = 2

∫ r2

r1

dr
ℓ

r2
1√

e2 − 2V (r)
.

In the Newtonian case, γ = 0, can do the integral, get ∆φ = 2π, so the orbits come back

to themselves. For γ = 1, get ∆φ > 2π, so they overclose, and the perihelion precesses.
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Let x = ℓ2/GMr, in the equation we’re integrating above, and take d
dϕ of that equation

to obtain
d2x

dφ2
− 1 + x =

3G2M2γx2

ℓ2
.

If GM/ℓ ≪ 1, we can treat the last term as a perturbation, x = x0 + x1, with x0 =

1+ξ cosφ, where ξ2 = 1−b2/a2 is the eccentricity of the ellipse, usually called e. Then find

x ≈ 1+ξ cos(1−α)φ, and ∆φ ≈ 2π(1+α), where 2πα ≈ 6πG2M2/ℓ2 ≈ 6πGM/c2a(1−ξ2).

For Mercury, use GMsun/c
2 = 1/48×105cm, a = 5.79×1012cm, ξ = 0.2056, to get 2πα ≈

5.01× 10−7 radians per orbit, which had been observed before (!) the GR calculation.

Deflection of light (radially, comes in and bounces off the Veff (r) barrier):

∆φ = 2ℓ

∫
∞

r1

dr

r2
1√

e2 − 2V (r)
, V (r) =

ℓ2

2r2
− γGMℓ2

r3

Using ℓ/e = b and defining w = b/r get

∆φ = 2

∫ w1

0

dw(1− w2(1− 2GMwγ

b
))−1/2.

For γ = 0, get ∆φ = π, no deflection in Newtonian case. For γ = 1, get ∆φ > π,

corresponding to focusing. Approximating GM/b ≪ 1, get ∆φ ≈ π + 4GM
b

. Deflection

becomes infinite for GM/b → 1/
√
27, which is where we already saw last time is the bcrit

needed to overcome the barrier in Veff (r) (at r = 3GM). Also time delay of light in GR.
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