$2/13/17$ Lecture 10 outline

• Recall from last time: Friedmann Robertson Walker space times.

$$
ds^2 = -dt^2 + a^2(t)d\Sigma^2,
$$

where the 3d space $d\Sigma^2$ is maximally symmetric. Again, three possibilities: the 3d space can have $k = R_{3d}/6$ negative (open), positive (flat), or positive (closed). By a choice of coordinates,

$$
d\Sigma^2 = \frac{dr^2}{1 - kr^2} + r^2 d\Omega^2
$$

with $k = 0, 1, -1$. Or

$$
d\Sigma^2 = d\chi^2 + f(\chi)^2 (d\theta^2 + \sin^2 \theta d\phi^2),
$$

with $f(\chi) = \sin \chi$, χ , $\sinh \chi$, respectively, for $k = 1, 0, -1$. The χ ranges are $\chi_{k=0,-1} \in$ $[0, \infty]$ and $\chi_{k=1} \in [0, \pi]$. The $k=0, -1$ cases are infinite, topologically R^3 , while the $k=1$ case is closed, topologically S^3 .

The symmetry of the RW space times require that the energy-momentum tensor be that of a perfect fluid: $T_{\mu\nu} = (p + \rho)U_{\mu}U_{\nu} + pg_{\mu\nu}$. Conservation of energy requires $\dot{\rho}/\rho = -3(1+w)\dot{a}/a$, where $w \equiv p/\rho$. For constant w this gives $\rho \sim a^{-3(1+w)}$.

Recall e.g. that the null dominant energy condition conjecture is $|w| \leq 1$. Einstein's equations $(G_{\mu\nu}u^{\mu}u^{\nu} = 8\pi G\rho$ and $G_{\mu\nu}s^{\mu}s^{\nu} = 8\pi G\rho$ lead to the Friedmann equations:

$$
\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2},
$$

$$
\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p).
$$

For $a \neq 0$, the first equation can be obtained as the integral of the second one. It gives the constant of integration as being equal to the same constant k .

As found by Einstein, if ρ and p are non-negative, it is impossible to have a constant. He introduced a cosmological constant component, which has $p_{\Lambda} = -\rho_{\Lambda}$, to get constant a, which he later referred to as his greatest blunder (though he turned out to be right about $\Lambda \neq 0$).

Three simple cases (universe is an admixture of these and possibly others): $\rho \sim a^{-n}$ with equation of state $w=\frac{1}{3}$ $\frac{1}{3}n-1$. Matter has $n=3$ (so $w=0$), radiation has $n=4$ (so $w = 1/3$), curvature has $n = 2$ (so $w = -1/3$), and vacuum has $n = 0$, so $w = -1$. For example, the Einstein static universe is a solution with $\rho_{\Lambda} = \frac{1}{2}$ $\frac{1}{2}\rho_M$; it is topologically $R \times S^3$.

For $k = 0$: in matter-dominated era, $a(t) = (t/t_0)^{2/3}$. For a radiation dominated era, $a(t) = (t/t_0)^{1/2}$. For a vacuum dominated era, $a(t) = e^{H(t-t_0)}$, with $H^2 \equiv 8\pi G\rho_v/3 \equiv \Lambda/3$.

It follows from the energy conservation equation that ρ decreases as the universe expands, and was higher in the past. As $a \to 0$, $\rho \to \infty$, so $a \to 0$ is a physical singularity, not just a harmless coordinate singularity. As $a \to 0$, space-time is singular, and Einstein's equations must break down before then, e.g. quantum effects must kick in. The past singularity "big bang" is there for all cases with $\rho + 3p > 0$. It can be evaded by e.g a positive Λ . For ρ and p non-negative, one can ask if the singularity can be evaded by a non-spherically symmetric configuration. Hawking proved in his PhD thesis that the singularity is still there, with fewer and fewer assumptions: singularity theorems. Will touch on them more later.

The Hubble parameter $H \equiv \dot{a}(t)$ is currently the Hubble constant $H_0 = H(t_0)$. $H(t_0)^{-1} \approx 9.78^{-1}h^{-1} \times 10^9$ years, with $h \approx .72$. Let $\rho_{crit} \equiv 3H_0^2/8\pi G \equiv 1.99 \times$ $10^{-29}h^2g/cm^3$. Define $\Omega_{m,r,v} \equiv \rho_{m,r,v}/\rho_{crit}$. Matter has $p_m \approx 0$, radiation (blackbody spectrum) has $p_r = \rho_r/3$, and vacuum CC has $p_v = -\rho_v$. If $\Omega = \Omega_v + \Omega_r + \Omega_v = 1$, then $k = 0$ and the universe is flat. This is what observation suggests to be the case in our universe: $\Omega_m \approx 4.6\%, \Omega_{d,m} \approx 24\%, \Omega_v \approx 71.4\%$. The scaling of $\rho(t)$ is such that radiation dominated for $t \to 0$, then matter, and finally vacuum.

For $k = 0$ and $k = -1$, and $\rho > 0$, note that $\dot{a} > 0$ so the universe will expand forever. For any matter with $p > 0$, ρ must decrease as a increases at least as rapidly as a^{-3} , so $\rho a^2 \to 0$ as $a \to \infty$. For $k = 0$ the expansion velocity $\dot{a} \to 0$ as $\tau \to \infty$, and for $k = -1$, $a \rightarrow 1$. For $k = 1$, the universe cannot expand forever: eventually RHS wants to become negative, but the LHS is positive, so $a \leq a_{crit}$ and this happens for finite t. There is a bounce, where $a \rightarrow a_{crit}$ and then the universe re-contracts. A finite t after the big bang, $a \rightarrow 0$ again, in a big crunch. The spatially closed 3-sphere universe will only exist a finite span of time.

• Cosmological redshift. At event P_1 , at time t_1 , a photon is emitted with frequency ω_1 . It is then observed at event P_2 at time t_2 . Let's find ω_2 . Recall that the frequency of light measured by an observer with 4-velocity u^{μ} is $\omega = -k_{\mu}u^{\mu}$. In flat spacetime, a stationary observer has $u^{\mu} = \delta_t^{\mu}$ t^{μ} , with $u_{\mu}u^{\mu} = -1$. In a static spacetime, a stationary observer has $u^{\mu} = K^{\mu}/\sqrt{-K_{\mu}K^{\mu}}$, where K^{μ} is the time-like Killing vector. Recall that, for geodesics, $p_{\mu}K^{\mu}$ is a constant of the motion, where p_{μ} is an object's 4-momentum and K^{μ}

is any Killing vector. So the light has $k_{\mu}K^{\mu}$ as a constant of the motion, as it moves along a null geodesic in the spacetime. So $\omega_2/\omega_1 = \sqrt{(-K \cdot K)_2/(-K \cdot K)_1} = a(\tau_2)/a(\tau_1)$. The wavelength expands with the universe, which makes sense. So $z \equiv (\lambda_2 - \lambda_1)/\lambda_1 = \frac{a(\tau_2)}{a(\tau_1)} - 1$.

• Penrose diagrams for FRW solutions. Define τ by $\tau = \int dt/a(t)$. Then

$$
ds^{2} = a^{2}(\tau)(-d\tau^{2} + d\chi^{2} + f(\chi)^{2}d\Omega_{2}).
$$

Depending on $k = 0, \pm 1$, this conformally maps FRW to Minkowski, de Sitter, or anti-de Sitter. However, we have to account for the fact that $t \geq 0$, with $a \to 0$ at $t = 0$. Is there a past horizon for event P? The Penrose diagram has τ instead of t, so the issue is whether, as $t \to 0$, is it the case that $\tau \to \tau_0$ finite, or $\tau \to -\infty$. Observer there can receive a signal from all other observers iff $\tau = \int dt/a(t)$ diverges as $a \to 0$. Suppose that $a(t) \propto t^q$: the integral diverges for $t \to 0$ if $q \ge 0$, and it converges for $0 < q < 1$.

Consider e.g. for $k = 0$, so conformally related to flat Minkowski space-time, and recall that $q_{matter} = 2/3$ and $q_{radiation} = 1/2$, so in the $0 < q < 1$ range where the integral converges: $\tau \to \tau_c$ finite as $t \to 0$. So there is a space like singularity \mathcal{I}^- at $t = 0$, where $a \to 0$, which has an point i⁰ (really an S^2) corresponding to spatial infinity. Looks like Minkowski space diagram, cut in half and keeping only the upper half. A past horizon. The term involving k is negligible for $a \to 0$, so they will have similar past horizons. For e.g. $k = 1$ with mostly dust, the particle horizon ceases to exist at as $a \to a_c$. A light ray emitted at the big bang would travel halfway around the $S³$ by the moment of maximal expansion. For $k = 1$, the above is already the Einstein static universe and, in addition to the past horizon there is also the future horizon at $t = \pi/2$. For $p = \Lambda = 0, \tau \in (0, \pi)$, so it is the same as de Sitter. For $p > 0$, instead $\tau \in (0, \tau_+)$ for some $\tau_+ < \pi$. For $k = -1$, there is a past space like \mathcal{I}^- at $t'=0$.

• Finding symmetric solutions of Einstein's equations, continued. Assume stationary and spherically symmetric. So assume Killing vectors for time translations, $K^{\mu} = \delta_t^{\mu}$ t^{μ} , and rotations L^{μ}_{θ} $\frac{\mu}{\theta}$ and L^{μ}_{ϕ} $^{\mu}_{\phi}$. Recall that Killing vectors satisfy $\mathcal{L}_V g_{\mu\nu} = \nabla_{\mu} V_{\nu} + \nabla_{\nu} V_{\nu} = 0$. Up to coordinate transformations, the general metric with these symmetries are of the form

$$
ds^{2} = -e^{2\alpha(r)}dt^{2} + e^{2\beta(r)}dr^{2} + r^{2}d\Omega^{2},
$$
\n(1)

E.g. $e^{2\gamma(r)}r^2d\Omega^2 \to r^2d\Omega^2$ via $r \to e^{\gamma}r$. Consider solving Einstein's equations for $T^{\mu\nu} = 0$, e.g. in the region outside of a star. The unique solution is the Schwarzschild solution. Birkoff's theorem shows that, for $T^{\mu\nu} = 0$, if we assume spherical symmetry but do not

assume static, the unique solution of Einstein's equation turns out to also be static: static comes for free, if it's vacuum and spherically symmetric.

Compute $R_{\mu\nu}$ and see that it vanishes only if $\alpha = -\beta$ and $\partial_r(re^{2\alpha}) = 1$, which gives the Schwarzschild solution, $e^{2\alpha} = 1 - R_s/r$. Recall that we know from the Newtonian limit that $h_{00} = 2\Phi$, so $R_s = 2GM$:

$$
ds^{2} = -(1 - \frac{2GM}{r})dt^{2} + (1 - \frac{2GM}{r})^{-1}dr^{2} + r^{2}d\Omega^{2}
$$

The Ricci tensor vanishes for Schwarzschild, but the Riemann tensor does not. Write out some example components, e.g. $R_{\phi r\phi}^r = r e^{-2\beta} \sin^2 \theta \partial_r \beta$, $R_{\theta t\theta}^t = -GM/r$, etc. The non-zero Riemann tensor will give e.g. the correct focusing of nearby geodesics,

$$
\frac{D^2}{d\lambda^2} \delta x^{\mu} = R^{\mu}_{\nu\rho\sigma} \frac{dx^{\nu}}{d\lambda} \frac{dx^{\rho}}{d\lambda} \delta x^{\sigma}.
$$

Also,

$$
R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma} = \frac{48G^2M^2}{r^6}.
$$

We see that $r = 0$ is really a singularity whereas $r = R_s$ is not a real singularity.