
2/13/17 Lecture 10 outline

• Recall from last time: Friedmann Robertson Walker space times.

ds2 = −dt2 + a2(t)dΣ2,

where the 3d space dΣ2 is maximally symmetric. Again, three possibilities: the 3d space

can have k = R3d/6 negative (open), positive (flat), or positive (closed). By a choice of

coordinates,

dΣ2 =
dr2

1− kr2
+ r2dΩ2

with k = 0, 1,−1. Or

dΣ2 = dχ2 + f(χ)2(dθ2 + sin2 θdφ2),

with f(χ) = sinχ, χ, sinhχ, respectively, for k = 1, 0,−1. The χ ranges are χk=0,−1 ∈

[0,∞] and χk=1 ∈ [0, π]. The k = 0,−1 cases are infinite, topologically R3, while the k = 1

case is closed, topologically S3.

The symmetry of the RW space times require that the energy-momentum tensor be

that of a perfect fluid: Tµν = (p + ρ)UµUν + pgµν . Conservation of energy requires

ρ̇/ρ = −3(1 + w)ȧ/a, where w ≡ p/ρ. For constant w this gives ρ ∼ a−3(1+w).

Recall e.g. that the null dominant energy condition conjecture is |w| ≤ 1. Einstein’s

equations (Gµνu
µuν = 8πGρ and Gµνs

µsν = 8πGp) lead to the Friedmann equations:

(

ȧ

a

)2

=
8πG

3
ρ−

k

a2
,

ä

a
= −

4πG

3
(ρ+ 3p).

For a 6= 0, the first equation can be obtained as the integral of the second one. It gives

the constant of integration as being equal to the same constant k.

As found by Einstein, if ρ and p are non-negative, it is impossible to have a constant.

He introduced a cosmological constant component, which has pΛ = −ρΛ, to get constant a,

which he later referred to as his greatest blunder (though he turned out to be right about

Λ 6= 0).

Three simple cases (universe is an admixture of these and possibly others): ρ ∼ a−n

with equation of state w = 1
3n − 1. Matter has n = 3 (so w = 0), radiation has n = 4

(so w = 1/3), curvature has n = 2 (so w = −1/3), and vacuum has n = 0, so w = −1.
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For example, the Einstein static universe is a solution with ρΛ = 1
2ρM ; it is topologically

R × S3.

For k = 0: in matter-dominated era, a(t) = (t/t0)
2/3. For a radiation dominated era,

a(t) = (t/t0)
1/2. For a vacuum dominated era, a(t) = eH(t−t0), withH2 ≡ 8πGρv/3 ≡ Λ/3.

It follows from the energy conservation equation that ρ decreases as the universe

expands, and was higher in the past. As a → 0, ρ → ∞, so a → 0 is a physical singularity,

not just a harmless coordinate singularity. As a → 0, space-time is singular, and Einstein’s

equations must break down before then, e.g. quantum effects must kick in. The past

singularity ”big bang” is there for all cases with ρ + 3p > 0. It can be evaded by e..g

a positive Λ. For ρ and p non-negative, one can ask if the singularity can be evaded by

a non-spherically symmetric configuration. Hawking proved in his PhD thesis that the

singularity is still there, with fewer and fewer assumptions: singularity theorems. Will

touch on them more later.

The Hubble parameter H ≡ ȧ(t) is currently the Hubble constant H0 = H(t0).

H(t0)
−1 ≈ 9.78−1h−1 × 109 years, with h ≈ .72. Let ρcrit ≡ 3H2

0/8πG ≡ 1.99 ×

10−29h2g/cm3. Define Ωm,r,v ≡ ρm,r,v/ρcrit. Matter has pm ≈ 0, radiation (blackbody

spectrum) has pr = ρr/3, and vacuum CC has pv = −ρv. If Ω = Ωv + Ωr + Ωv = 1, then

k = 0 and the universe is flat. This is what observation suggests to be the case in our

universe: Ωm ≈ 4.6%, Ωd.m. ≈ 24%, Ωv ≈ 71.4%. The scaling of ρ(t) is such that radiation

dominated for t → 0, then matter, and finally vacuum.

For k = 0 and k = −1, and ρ > 0, note that ȧ > 0 so the universe will expand forever.

For any matter with p > 0, ρ must decrease as a increases at least as rapidly as a−3, so

ρa2 → 0 as a → ∞. For k = 0 the expansion velocity ȧ → 0 as τ → ∞, and for k = −1,

ȧ → 1. For k = 1, the universe cannot expand forever: eventually RHS wants to become

negative, but the LHS is positive, so a ≤ acrit and this happens for finite t. There is a

bounce, where a → acrit and then the universe re-contracts. A finite t after the big bang,

a → 0 again, in a big crunch. The spatially closed 3-sphere universe will only exist a finite

span of time.

• Cosmological redshift. At event P1, at time t1, a photon is emitted with frequency

ω1. It is then observed at event P2 at time t2. Let’s find ω2. Recall that the frequency

of light measured by an observer with 4-velocity uµ is ω = −kµu
µ. In flat spacetime,

a stationary observer has uµ = δµt , with uµu
µ = −1. In a static spacetime, a stationary

observer has uµ = Kµ/
√

−KµKµ, whereKµ is the time-like Killing vector. Recall that, for

geodesics, pµK
µ is a constant of the motion, where pµ is an object’s 4-momentum and Kµ
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is any Killing vector. So the light has kµK
µ as a constant of the motion, as it moves along

a null geodesic in the spacetime. So ω2/ω1 =
√

(−K ·K)2/(−K ·K)1 = a(τ2)/a(τ1). The

wavelength expands with the universe, which makes sense. So z ≡ (λ2−λ1)/λ1 = a(τ2)
a(τ1)

−1.

• Penrose diagrams for FRW solutions. Define τ by τ =
∫

dt/a(t). Then

ds2 = a2(τ)(−dτ2 + dχ2 + f(χ)2dΩ2).

Depending on k = 0,±1, this conformally maps FRW to Minkowski, de Sitter, or anti-de

Sitter. However, we have to account for the fact that t ≥ 0, with a → 0 at t = 0. Is there a

past horizon for event P? The Penrose diagram has τ instead of t, so the issue is whether,

as t → 0, is it the case that τ → τ0 finite, or τ → −∞. Observer there can receive a signal

from all other observers iff τ =
∫

dt/a(t) diverges as a → 0. Suppose that a(t) ∝ tq: the

integral diverges for t → 0 if q ≥ 0, and it converges for 0 < q < 1.

Consider e.g. for k = 0, so conformally related to flat Minkowski space-time, and

recall that qmatter = 2/3 and qradiation = 1/2, so in the 0 < q < 1 range where the integral

converges: τ → τc finite as t → 0. So there is a space like singularity I− at t = 0, where

a → 0, which has an point i0 (really an S2) corresponding to spatial infinity. Looks like

Minkowski space diagram, cut in half and keeping only the upper half. A past horizon.

The term involving k is negligible for a → 0, so they will have similar past horizons. For

e.g. k = 1 with mostly dust, the particle horizon ceases to exist at as a → ac. A light ray

emitted at the big bang would travel halfway around the S3 by the moment of maximal

expansion. For k = 1, the above is already the Einstein static universe and, in addition to

the past horizon there is also the future horizon at t = π/2. For p = Λ = 0, τ ∈ (0, π), so

it is the same as de Sitter. For p > 0, instead τ ∈ (0, τ+) for some τ+ < π. For k = −1,

there is a past space like I− at t′ = 0.

• Finding symmetric solutions of Einstein’s equations, continued. Assume stationary

and spherically symmetric. So assume Killing vectors for time translations, Kµ = δµt , and

rotations Lµ
θ and Lµ

φ. Recall that Killing vectors satisfy LV gµν = ∇µVν +∇νVν = 0. Up

to coordinate transformations, the general metric with these symmetries are of the form

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2, (1)

E.g. e2γ(r)r2dΩ2 → r2dΩ2 via r → eγr. Consider solving Einstein’s equations for Tµν = 0,

e.g. in the region outside of a star. The unique solution is the Schwarzschild solution.

Birkoff’s theorem shows that, for Tµν = 0, if we assume spherical symmetry but do not
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assume static, the unique solution of Einstein’s equation turns out to also be static: static

comes for free, if it’s vacuum and spherically symmetric.

Compute Rµν and see that it vanishes only if α = −β and ∂r(re
2α) = 1, which gives

the Schwarzschild solution, e2α = 1−Rs/r. Recall that we know from the Newtonian limit

that h00 = 2Φ, so Rs = 2GM :

ds2 = −(1−
2GM

r
)dt2 + (1−

2GM

r
)−1dr2 + r2dΩ2

The Ricci tensor vanishes for Schwarzschild, but the Riemann tensor does not. Write

out some example components, e.g. Rr
φrφ = re−2β sin2 θ∂rβ, R

t
θtθ = −GM/r, etc. The

non-zero Riemann tensor will give e.g. the correct focusing of nearby geodesics,

D2

dλ2
δxµ = Rµ

νρσ

dxν

dλ

dxρ

dλ
δxσ.

Also,

RµνρσRµνρσ =
48G2M2

r6
.

We see that r = 0 is really a singularity whereas r = Rs is not a real singularity.
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