
1/9/17 Lecture 1 outline

• Introduction and lightning review. Start by comparing and contrasting gravity vs

the other known fundamental forces (electromagnetism, strong, weak).

0. Trivial (but annoying): standard convention for the metric signature. I like mostly

minus (so p2 = m2) whereas it is standard (and useful) in GR to use mostly plus.

1. At experimentally accessible short scales, gravity is by far the weakest force. Com-

pare gravity to E&M at e.g. atomic scales for a Hydrogen atom: ∼ Gm1m2/e
2 ∼

m1m2M
−2
pl /α ∼ 10−42 where α ≈ 1/137 is the fine structure constant and Mpl ∼

1019GeV ∼ 10−8kg is the Planck mass. But on larger scales it is the most important

force. Because other forces have + and − charges, leading to neutral objects and then

remaining forces are merely weaker higher multipole moments. But gravity affects

all masses positively, so no gravity neutrals, and the effects compound at larger and

larger scales. Even light is bent by gravity so, since nothing can travel faster than

light, gravity affects the casual structure of space-time.

2. All forces are based on local symmetry gauge invariances. For the non-gravity forces

these are SU(3)C × SU(2)W × U(1)Y and at low-energy this becomes U(1)EM . The

symmetry acts as ψq → eiqf(x)/h̄cψq, where ψq is a quantum-mechanical wavefunction,

or quantum field theory field, of charge q. The QED Lagrangian density, for example,

is

L = −1

4
FµνF

µν + Lmatter(ψ,D
(q)
µ ψ) + Lother ⊃ −AµJ

µ

where D
(q)
µ = ∂µ + iqAµ is the covariant derivative.

The Lother term is separated out to make a point: there are generally also terms

with Fµν appearing in other ways. For example, quantum effects can induce terms ∼ F 4

and there can also be interactions OµνF
µν with Oµν involving the matter fields, e.g. the

magnetic moment interactions that are induced by quantum loops. (Their analog in GR,

to be mentioned soon, could be present and lead to small deviations from the strongest

form of the equivalence principle.)

Under the gauge transformation (setting h̄ = c = 1 for convenience here)

ψq → eiqf(x)ψq(x), Aµ → Aµ + ∂µf(x), so D(q)
µ ψq(x) → eiqf(x)D(q)

µ ψq(x).
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The gauge field Aµ and covariant derivative are needed so that we can form derivatives

that transform nicely. Gauge symmetry requires that L is invariant under these transfor-

mations. Gauge transformations are not observable – the whole point is that physics does

not care about such transformations. Hence they are not really symmetries in the global

(as in spatially independent) symmetry sense: instead they have to do with eliminating

unphysical degrees of freedom associated with a useful redundancy. Note that gauge in-

variance requires current conservation, ∂µJ
µ = 0, since varying L by a total derivative

does nothing.

These theories have a global symmetry invariance under the Poincare group of trans-

lations, rotations, and boosts, e.g. xµ → Λµ
νx

ν +aµ. Correspondingly, there is a conserved

energy-momentum tensor Tµν , with ∂µT
µν = 0, that is constructed from aµ shift invari-

ance via Noether’s procedure.

GR, on the other hand, is based on promoting Poincare symmetry to a gauge symmetry

under general coordinate transformations xµ → xµ
′

(x). Scalars, vectors, tensors, transform

nicely e.g. :

V µ′

ν′ =
∂xµ

′

∂xµ
∂xν

∂xµ′
V µ

ν , ∇λ′V µ′

ν′ =
∂xλ

∂xλ′

∂xµ
′

∂xµ
∂xν

∂xµ′
∇λV

µ
ν .

The covariant derivatives require a connection, in order to yield nice tensors after taking

the derivative, e.g.

∇ρVµ = ∂ρVµ − Γλ
ρµVλ, ∇ρV

µ = ∂ρV
µ + Γµ

ρσV
σ.

The opposite signs ensure that e.g. ∇ρ(VµV
µ) = ∂ρ(VµV

µ).

Local theories with this symmetry have the space-time metric gµν(x), which trans-

forms as a tensor, such that ds2 = gµνdx
µdxν is invariant. The metric gµν is the analog

of Aµ in electromagnetism – it is the basic, dynamical field variable, though not directly

observable according to gauge symmetry, and it is determined as a solution of a differential

equation by the equations of motion.

The condition that gµνv
µwν is unchanged under parallel transport requires∇λgµν = 0.

This is (torsion free) coordinate basis, and in this basis the connection can be written in

terms of the metric

Γµ
ρσ = 1

2g
µλ(∂ρgλσ + ∂σgλρ − ∂λgρσ).

2



The usual equations of flat space must be replaced with covariant versions, e.g. charge

conservation becomes

∇µJ
µ = ∂µJ

µ + Γµ
µσJ

σ = 0.

Conservation of energy and momentum becomes

∇µT
µσ = ∂µT

µσ + Γµ
µλT

λσ + Γσ
µλT

µλ = 0.

The extra terms have a nice interpretation in terms of Stokes’, Gauss theorem. Letting

|g| ≡= − detµν(gµν), the scalar integration measure is
√

|g|d4x, where the
√

|g| just cancels
the Jacobian determinant. So Qencl =

∫
√

|g|d3xJ0 is the scalar, conserved charge. Since

Γµ
µσ = 1√

|g|
∂σ

√

|g|, ∇µJ
µ = 1√

|g|
∂µ(

√

|g|Jµ).

3. Quantum differences: The non-gravity forces are communicated by spin 1 messengers:

the photon, and its analogs for the weak and strong forces (W-bosons, Z-bosons, and

gluons). The graviton is a ripple of gµν and hence has spin 2. Moreover, in h̄ = c = 1,

the other forces have a strength that is classically dimensionless, e.g. αEM ≈ 1/137

whereas gravity has GN ∼ 1/M2
pl. So quantum effects in perturbation theory would go

like powers of GNE
2, and are irrelevant (in the QFT technical sense, and in everyday

use sense) for E ≪ M2
pl, as is the case at the LHC etc. On the other hand, these

effects become large for E ∼Mpl, so the theory must be UV completed to something

else at or before the Planck scale. String theory is the most popular candidate.

4. GR and the equivalence principle says that gravity can be thought of as not a force

but as, instead, free-fall in the curved space-time metric. A free-falling particle has

world line xµ(λ) that satisfies

D

dλ

dxµ

dλ
= 0 → d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0.

Recall that D
dλ

= dxσ

dλ
∇σ. The geodesic equation follows from extremizing the action:

I ∼
∫

(−gµν
dxµ

dλ

dxν

dλ
)1/2dλ or I ∼

∫

gµν
dxµ

dλ

dxν

dλ
dλ

under xµ → xµ + δxµ (so also gµν → gµν + (∂σgµνδx
σ)).

Other forces contribute to an acceleration term on the RHS of the geodesic equation,

e.g. E and M for a charged q particle of mass m lead to

D

dτ

dxµ

dτ
=

q

m
Fµ

ν
dxν

dτ
.

3



(Aside: in Kaluza-Klein theory, there is a 5th dimension, a circle, and this can be under-

stood as coming from GR in 5d, with q related to the momentum around S1, and the above

term on the RHS can be moved to the LHS and reinterpreted in terms of D2xµ/dτ2 = 0.

5. Maxwell’s equations follow from varying

L = −1

4
FµνF

µν + Lmatter(ψ,D
(q)
µ ψ) + Lother ⊃ −AµJ

µ

with respect to δAµ. Likewise, Einstein’s equations follow from varying the Einstein-

Hilbert action with respect to δgµν :

S =

∫

ddx
√

|g|
[

1

16πG
R+ Lmatter(η → g, ∂µ → ∇µ) + Lother

]

.

Here Lother can be other terms involving curvature and the other fields, e.g. maybe a

term ∼ R4 and / or a term ∼ RFµνF
µν . Einstein’s GR and the strongest form of the

equivalence principle are the conjecture that such terms are absent. This conjecture

has not yet been tested to sufficient accuracy to determine if it is correct or false – it

would not ruin the rest of the theory structure if Lother 6= 0, and indeed such terms

can generally be induced by quantum loops, and they are present in string theory and

M-theory etc. For the moment, we often assume Lother 6= 0. Dimensional analysis:

L = d, [g] = 0, [R] = 2, thus [G] = 2 − d, i.e. G ∼ 1/Md−2
pl . Higher order R terms

might be expected to depend on the dimensionless quantity R/M2
pl ∼ Rℓ2pl, which is

negligible unless the curvature radius is on order of ℓpl ∼ 10−33cm (!).

The gµν Euler Lagrange equations then give

Gµν ≡ Rµν − 1
2
Rgµν = 8πGTµν , Tµν = −2

1
√

|g|
δSmatter

δgµν
.

The last expression for Tµν is equivalent to that found via Noether’s procedure. The Lother

possible terms will lead to variants of (deviations from) Einstein’s equations.
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