Physics 225b, Homework 3, Due Monday Feb 6.

1. Two objects of mass M have a head-on collision at event (0, 0, 0, 0). At $t = \infty$ they were at $x = \pm \infty$ with zero velocity.

(a) Using Newtonian theory show that their position for $t \leq 0$ are $x(t) = \pm Ct^{2/3}$ and find the constant C.

- (b) For what separations is the Newtonian approximation reasonable?
- (c) Find $h_{xx}^{TT}(t)$ and (x, y, z) = (0, R, 0)[Carroll]
- 2. Fill in the details to verify that the metrics given in lecture ds^2 for de Sitter and anti-de Sitter indeed follow from the induced metric on the surfaces in one higher dimension. Also, verify that their Riemann tensor satisfies $R_{\rho\sigma\mu\nu} = (R/12)(g_{\rho\mu}g_{\sigma\nu} - g_{\rho\nu}g_{\sigma\mu})$ with R a constant. Relate R to the radius C of the hyperboloid surface.
- 3. Consider de Sitter space in coordinates where

$$ds^{2} = -dt^{2} + e^{Ht}(dx^{2} + dy^{2} + dz^{2}).$$

Solve the geodesic equation for co-moving observers ($x^i = \text{constant}$) to find the affine parameter as a function of t. Show that the geodesics reach $t = -\infty$ in a finite affine parameter, demonstrating that these coordinates fail to cover the entire space-time. [Carroll]

4. Consider the 2d space-time with metric

$$ds^2 = -x^2 dt^2 + dx^2$$

where $x \ge 0$.

(a) Find the shape x(t) of null geodesics.

(b) Write the equation to determine the shape of time-like geodesics.

(c) Verify that the coordinate change $x = (X^2 - T^2)^{1/2}$, $t = \tanh^{-1}(T/X)$ leads to $ds^2 = -dT^2 + dX^2$, i.e. 2d Minkowski space.