
2/1/16 Lecture 8 outline

• Last time:

In(a) =

∫

d4k

(2π)4
1

(k2 + a)n

with n integer and Im(a) > 0 and k in Minkowski space. See

In =
(−1)n−1

(n− 1)!

dn−1

dan−1
I1(a), I1 =

−i

16π2

∫ Λ2

0

du
u− a+ a

u− a

where we used the solid angle ΩD−1 = 2πD/2/Γ(D/2), which is 2π2 for D = 4. Get

In(a) = i
(

16π2(n− 1)(n− 2)an−2
)

−1
for n ≥ 3.

Special cases

I1 =
i

16π2
a ln(−a) + . . . ,

I2 =
−i

16π2
ln(−a) + . . . ,

where . . . are terms involving the regulator.

• Let’s illustrate another, extremely popular, choice of regulator: dimensional regular-

ization. Suppose that we hadD instead of 4 dimensions. Compute by analytic continuation

in D. Then take D = 4 − ǫ, and take ǫ → 0. By going slightly below 4 dimensions, we

improve the UV behavior (make the theory weaker in the UV, though stronger in the IR).

In particular, using the notation above,

I ≡ iI1(−m2) ≡

∫

dDkE
(2π)D

1

k2E +m2
=

ΩD−1

(2π)D

∫

∞

0

uD−1du
1

u2 +m2
.

Again, ΩD−1 = 2πD/2/Γ(D/2) is the surface area of a unit sphere SD−1. Let u2 = m2y

I =
mD−2

2DπD/2Γ(D/2)

∫

∞

0

y(D−2)/2dy

y + 1
.

Now use (y + 1)−1 =
∫

∞

0
dte−t(y+1) and Γ(z) =

∫

∞

0
dte−ttz−1 to get

I =
mD−2

(4π)D/2
Γ(1− 1

2D).

This blows up for D = 4, because Γ(1 − 1
2D) has a pole there. Recall Γ(z) has a simple

pole at z = 0, and also at all negative integer values of z.
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Recall that near x = 0,

lim
x→0

Γ(x) =
1

x
− γ +O(x),

where γ ≈ 0.5772 is the Euler-Mascheroni constant. For x = −n, we can write a similar

expression, which also follows from the above and Γ(z + 1) = zΓ(z). This gives

lim
x→−n

Γ(x) =
(−1)n

n!
(

1

x+ n
− γ + 1 + . . .+

1

n
+O(x+ n).).

E.g. use Γ(2−D/2) = (1−D/2)Γ(1−D/2). Let D = 4− ǫ, then (dropping O(ǫ),

Γ(2−D/2)

(4π)D/2
∆D/2−2 →

1

(4π)2

(

2

ǫ
− log

∆

4π
− γ

)

.

We can apply this to evaluate Π(1)(p2) = 1
2λI. One last thing: replace λold = λnewµ

4−D,

where λnew is dimensionless. Expanding around D = 4, we get

Π′(p2)(1) = −
λm2

32π2

(

2

ǫ
− log

m2

4πµ2
+ 1− γ

)

.

The scale µ introduced above, which we’ll see is immaterial at the end of the day, nicely

makes the units work inside the log. Summarizing, at one-loop there is a 1/ǫ pole, which

we’ll deal with soon, and a finite piece.

• More useful integrals:
∫

dDkE
(2π)D

1

(k2E +∆)n
=

1

4π)D/2

Γ(n− 1
2D)

Γ(n)
∆D/2−n.

∫

dDkE
(2π)D

k2E
(k2E +∆)n

=
1

4π)D/2

D

2

Γ(n− 1
2D − 1)

Γ(n)
∆1+D/2−n.

• Now consider Γ̃(4)(p1, p2, p3, p4). There are three 1-loop diagrams, in the s, t, u

channels. Recall s = (p1 + p2)
2, t = (p1 + p3)

2, u = (p1 + p4)
2, s+ t+ u = 4m2. Get

Γ̃(4) = −λh̄−1 + (−iλ)2(F (s) + F (t) + F (u)) +O(h̄),

where

F (p2) = 1
2 i

∫

d4k

(2π)4
1

k2 −m2

1

(k + p)2 −m2
.

The 1
2 is a symmetry factor. Evaluate using

1

AB
=

∫ 1

0

dx
1

(xA+ (1− x)B)2
.

Aside: more generally, have
n
∏

j=1

A
−αj

j =
Γ(

∑

j αj)
∏

j Γ(αj)

∫ 1

0

dx1 . . .

∫ 1

0

dxnδ(1−
∑

j

xj)

∏

k x
αk−1

(
∑

i xiAi)
∑

αj

.
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