2/1/16 Lecture 8 outline

e Last time:
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with n integer and I'm(a) > 0 and k in Minkowski space. See
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where we used the solid angle Qp_; = 27P/2/T'(D/2), which is 272 for D = 4. Get
I(a) =i (167%(n — 1)(n — 2)&”_2)_1 for n > 3.

Special cases
i

I = 167r2aln(—a) + ...
I, = _—Zln(—a)-l—...,
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where ... are terms involving the regulator.

e Let’s illustrate another, extremely popular, choice of regulator: dimensional regular-
ization. Suppose that we had D instead of 4 dimensions. Compute by analytic continuation
in D. Then take D = 4 — ¢, and take ¢ — 0. By going slightly below 4 dimensions, we
improve the UV behavior (make the theory weaker in the UV, though stronger in the IR).

In particular, using the notation above,
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Again, Qp_; = 27P/2/T(D/2) is the surface area of a unit sphere SP~1. Let u? = m?y
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Now use (y+ 1)~ = [ dte ') and T'(2) = [, dte='t*~! to get
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This blows up for D = 4, because I'(1 — $D) has a pole there. Recall I'(z) has a simple

pole at z = 0, and also at all negative integer values of z.
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Recall that near x = 0,
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lim I(z) = — — v+ O(z),

where v ~ 0.5772 is the Euler-Mascheroni constant. For x = —n, we can write a similar

expression, which also follows from the above and I'(z 4+ 1) = zI'(z). This gives
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E.g. useI'(2—D/2)=(1—-D/2)I'(1 — D/2). Let D = 4 — ¢, then (dropping O(e),
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We can apply this to evaluate II(V (p?) = %)\I. One last thing: replace Aojq = Apewp =P
where A, is dimensionless. Expanding around D = 4, we get
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The scale p introduced above, which we’ll see is immaterial at the end of the day, nicely
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makes the units work inside the log. Summarizing, at one-loop there is a 1/e pole, which
we’ll deal with soon, and a finite piece.

e More useful integrals:
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e Now consider f(4)(p1,p2,p3,p4). There are three 1-loop diagrams, in the s, t, u
channels. Recall s = (p; + p2)?, t = (p1 +p3)?, u = (p1 +pa)?, s+t +u=4m?. Get

TW = X\ 4 (—iN)2(F(s) + F(t) + F(u)) + O(h),
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The % is a symmetry factor. Evaluate using

where
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Aside: more generally, have
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