
1/28/16 Lecture 7 outline

• Last time: one-loop self-energy for λφ4:

−iΠ′(p2) = (−iλ) 12

∫

d4k

(2π)4
i

k2 −m2
+more loops.

Going to Euclidean space, d4k = id4kE ,

Π′(p2) = 1
2λ

∫

d4kE
(2π)4

1

k2E +m2
+more loops.

Recall expression ΩD−1 = 2πD/2/Γ(D/2) is the surface area of a unit sphere SD−1. For

D = 4, get Ω3 = 2π2, so
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λm2

32π2

∫ Λ2/m2
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udu
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m2
)

)

.

Here Λ is a UV momentum cutoff. Result is quadratically (and also log) divergent as

Λ → ∞. The subject of renormalization is the physical interpretation of these divergences.

The first thing to do is to regulate them, as we did above with a momentum cutoff. There

are other ways to regulate. How one regulates is physically irrelevant. The physics is in

the renormalization interpretation of the regulated results, and at the end of the day the

choice of regulator doesn’t matter.

• Casimir force example (see Schwartz ch 15). The 1
2 h̄ωk normal ordering constant

(CC contribution) that we dropped can lead to an observable effect for quantum fields in

a box. Consider two plates separated by a distance a. Put the whole system in a box of

length L. E.g. in 1d, ωn = nπ/r

Etot(a) = E(a) + E(L− a) = (
1

a
+

1

L− a
)
π

2

∞
∑

n=1

n.

Several ways to regulate the divergent sum, e.g. the Riemann ζ function, ζ(s) =
∑

n n
−s,

analytically continued to s → −1, ζ(−1) = −1/12, i.e.
∑

∞

n=1 n = −1/12. All regulators

give the same answer! F (a) = −dEtot/da = −πh̄c/24a2. In 3d, with two photon polariza-

tions, get F (a) = −π2h̄cA/240a4, where A is the area of the walls (it’s a pressure) and a

is their separation. Predicted in 1948, observed in 1997.

• Study more generally the superficial degree of divergence of 1PI diagrams. Consider

the general form of Γ(n):

Γ(n) ∼

∫ L
∏

i=1

d4ki
(2π)4

I
∏

j=1

1

l2j −m2 + iǫ
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For large k the integrand behaves as ∼ k4L−2I . Degree of UV divergence (superficially) is

D = 4L − 2I = 2I − 4V + 4 (recall that L = I − V + 1). Suppose interaction is φp, then

pV = 2I + n.

E.g. for λφ4, p = 4, get D = 4−n. This fits with what we found for n = 2, there was a

quadratic divergence, i.e. D = 2. For n = 4, we get D = 0, which means a log divergence.

For n > 4, we get D < 0, which means that there is no divergence at all (superficially, at

least)! So the only two divergent cases are n = 2 and n = 4. The point will be that we can

absorb these two divergent cases into corrections to the two parameters m and λ. That is

the statement that the theory for p = 4 is renormalizable.

For p = 6, write 4V4 + 6V6 = 2I + n, get D = 4 − n + 2V6. The V4 vertex is

renormalizable, the V6 is not. For λφ4, the UV divergent terms are n = 2, 4. Higher n

diagrams only have sub-divergences, which will be accounted for by properly treating the

n = 2 and n = 4 cases. Example of a n = 6 diagram with a sub-divergence from the n = 2

diagram. Contrast λ4φ
4 with a λ3φ

3 theory (super-renormalizable) and a λ6φ
6 theory

(non-renormalizable).

More generally, with bosons and fermions, D =
∑

i nidi+2(IB)+3(IF )−4
∑

i ni+4,

where ni is the number of vertices of i-th type and di is the number of derivatives in that

interaction, and IB and IF are the numbers of internal boson and fermion lines. Then

D = −B− 3
2F +4+

∑

i(dimLi− 4), where B and F are the numbers of external bose and

fermion lines.

• Dimensional analysis and understanding the degrees of divergence by power-

counting. In h̄ = c = 1 units, dimensionful quantities can be written as x ∼ m[x], which

defines [x], the mass dimension of x. In particular, in D space-time dimensions, we have

[S] = 0 and [dDx] = −D, so [L] = D so scalars have [φ] = (D − 2)/2 and fermions have

[ψ] = (D − 1)/2. We see that a λpφ
p theory has [λp] = D − p(D − 2)/2. In particular,

for D = 4, get [λp] = 4 − p, showing why p = 4 is special, as compared with say λ3 ∼ M

and λ6 ∼ M−2. Since Γ(n) has units of action, i.e. h̄, it has [Γ(n)] = 0. So a contribution

with e.g. V6 vertices has, on dimensional grounds, a factor of (λ6E
2)V6 , where E is some

energy scale. This reproduces the degree of UV divergence if we take E ∼ Λ → ∞. Dis-

cuss similar power counting for gravity, and for Fermi’s 4-fermion weak-interaction vertex.

Interpretation as low-energy effective theory with cutoff. ”Non-renormalizable” theories

are fine, and actually nice, in the IR, and just need some fixing up in the UV, but some

UV completion.
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General integrals

In(a) =

∫

d4k

(2π)4
1

(k2 + a)n

with n integer and Im(a) > 0 and k in Minkowski space. See

In =
(−1)n−1

(n− 1)!

dn−1

dan−1
I1(a), I1 =

−i

16π2

∫ Λ2

0

du
u− a+ a

u− a

where we used the solid angle ΩD−1 = 2πD/2/Γ(D/2), which is 2π2 for D = 4. Get

In(a) = i
(

16π2(n− 1)(n− 2)an−2
)−1

for n ≥ 3.

Special cases

I1 =
i

16π2
a ln(−a) + . . . ,

I2 =
−i

16π2
ln(−a) + . . . ,

where . . . are terms involving the regulator.
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