
1/26/16 Lecture 6 outline

• As we discussed last time, general green’s functions can be built as tree-level dia-

grams, composed of the 1PI building blocks. This is expressed mathematically via

W [J ] = Γ[φ] +

∫

d4xJ(x)φ(x).

Γ[φ] = W [J ]−

∫

d4xJ(x)φ(x).

Legendre transform, like F = E − TS in stat mech; get other variable via

φ(x) =
δW [J ]

δJ(x)
=

〈0|φ(x)|0〉J
〈0|0〉J

, J = −
δ

δφ
Γ[φ].

Here Γ[φ] is the quantum effective action, defined by

1PI diagram ≡ iΓ̃(n)(p1, . . . pn),

where the external propagators are amputated, and the (2π)4δ4(
∑

i pi) is omitted, and for

the 1PI propagator we define the 1PI diagram to be −iΠ′(p), and we instead define

iΓ̃(2)(p,−p) = 1PI diagram + i(p2 −m2) = i(p2 −m2 −Π′(p2)).

As we saw, summing the 1PI diagrams then gives for the full propagator

D(p) =
i

Γ̃(2)
=

i

p2 −m2 − Π′(p2)
,

so the self energy Π′(p2) is like a correction to the mass.

In position space

Γ(n)(x1, . . . xn) = 〈Tφ(x1) . . . φ(xn)〉|1PI .

and

Γ[φ] =
∞
∑

n=1

1

n!

∫

d4x1 . . . d
4xnΓ

(n)(x1, . . . xn)φ(x1) . . . φ(xn).

is called quantum effective action. As discussed last time,

Γ[φ] =
1

h̄
(S[φ] +O(h̄)) ,

where the latter terms are quantum loop corrections.
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Again, the point is that the quantum effects are accounted for in the quantum effective

action. All quantum green’s functions (and hence amplitudes) can be computed by a

classical analysis (tree-diagrams), using the quantum effective action.

• Writing h̄Γ[φ] =
∫

Leff , the quantum effective lagrangian is of the form Leff =
1
2
Z[φ]∂µφ∂

µφ + . . . − Veff (φ), where . . . are higher derivative terms and Veff (φ) is the

effective potential, which determines the low-energy momentum properties of the theory.

One-loop effective potential for λφ4:

V
(1)
eff (φ) = i

∞
∑

n=1

1

2n

∫

d4k

(2π)4

(

λ
1

k2 −m2 + iǫ

φ2

2

)n

= 1
2

∫

d4kE
(2π)4

ln

(

1 +
1
2
λφ2

k2E +m2

)

(S. Coleman and E. Weinberg.) Symmetry factors: 1/n! not all the way cancelled, because

of Zn rotation symmetry, and reflection, gives 1/2n. At each vertex, can exchange external

lines, so 1/4! not all the way cancelled, leads to 1/2 for each vertex. In the last expression

we rotated to Euclidean space, d4k = id4kE . Still have to explain how to handle kE

integral; we’ll discuss this soon.

• Another example of a 1-loop term, the self-energy for λφ4:

−iΠ′(p2) = (−iλ) 1
2

∫

d4k

(2π)4
i

k2 −m2
+more loops.

Going to Euclidean space, d4k = id4kE ,

Π′(p2) = 1
2
λ

∫

d4kE
(2π)4

1

k2E +m2
+more loops.

Recall expression ΩD−1 = 2πD/2/Γ(D/2) is the surface area of a unit sphere SD−1. For

D = 4, get Ω3 = 2π2, so

Π′(p2) =
λm2

32π2

∫ Λ2/m2

0

udu

u+ 1
=

λm2

32π2

(

Λ2

m2
− log(1 +

Λ2

m2
)

)

.

Here Λ is a UV momentum cutoff. Result is quadratically (and also log) divergent as

Λ → ∞. The subject of renormalization is the physical interpretation of these divergences.

The first thing to do is to regulate them, as we did above with a momentum cutoff. There

are other ways to regulate. How one regulates is physically irrelevant. The physics is in
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the renormalization interpretation of the regulated results, and at the end of the day the

choice of regulator doesn’t matter.

• Study more generally the superficial degree of divergence of 1PI diagrams. Consider

the general form of Γ(n):

Γ(n) ∼

∫ L
∏

i=1

d4ki
(2π)4

I
∏

j=1

1

l2j −m2 + iǫ

For large k the integrand behaves as ∼ k4L−2I . Degree of UV divergence (superficially) is

D = 4L − 2I = 2I − 4V + 4 (recall that L = I − V + 1). Suppose interaction is φp, then

pV = 2I + n.

E.g. for λφ4, p = 4, get D = 4−n. This fits with what we found for n = 2, there was a

quadratic divergence, i.e. D = 2. For n = 4, we get D = 0, which means a log divergence.

For n > 4, we get D < 0, which means that there is no divergence at all (superficially, at

least)! So the only two divergent cases are n = 2 and n = 4. The point will be that we can

absorb these two divergent cases into corrections to the two parameters m and λ. That is

the statement that the theory for p = 4 is renormalizable.
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