
1/19/16 Lecture 5 outline

• Everything in this bullet is review from the last lecture:

Z[J(x)] =

∫

[dφ] exp(
i

h̄

∫

d4x[L+ J(x)φ(x)]) = N exp[
i

h̄
Sint[−ih̄

δ

δJ
])Zfree[J ], (1)

Zfree[J ] = Z0[J ] = exp(−1
2
h̄−1

∫

d4xd4yJ(x)DF (x− y)J(y)). (2)

iW [J ] ≡ lnZ[J ]

iW [J ] is the generating functional for connected Green’s functions

G(n)
conn(x1, . . . xn) =

n
∏

j=1

−ih̄δ

δJ(xj)
iW [J ],

i.e.

iW [J ] =

∞
∑

n=1

(i/h̄)n

n!

∫

d4x1 . . . d
4xnG

(n)
conn(x1, . . . xn)J(x1) . . . J(xn).

The 1-point function (with source J left non-zero):

G(1)
conn(x) = (−ih̄)

δiW

δJ
= (−ih̄)

1

Z[J ]

δZ[J ]

δJ(x)
=

〈0|φ(x)|0〉J
〈0|0〉J

≡ φ(x),

Picture this as a propagator connecting the point x to a blob, where the blob represents

all diagrams from expanding in the interaction, and including connecting to the external

source J(x) (before setting it to zero). The denominator cancels off the disconnected

vacuum bubble diagrams.

G(2)
conn(x, y) = (−ih̄)2

δ2

δJ(x)δJ(y)
(iW ) = 〈φ(x)φ(y)〉J − 〈φ(x)〉J〈φ(y)〉J .

The first term includes both connected and disconnected contributions, and the 2nd term

precisely cancels off the disconnected ones. Similarly δW/δJ3 has terms like 〈φφφ〉 −

(〈φφ〉〈φ〉 + 2 terms) + 2〈φ〉〈φ〉〈φ〉, which give precisely 〈φφφ〉connected. Can prove by

induction that the log in W properly subtracts away all non-connected diagrams.

• Example: free Klein Gordon theory. We found

Zfree[J ] = Z0[J ] = exp(−1
2 h̄

−1

∫

d4xd4yJ(x)DF (x− y)J(y)), (3)

so we get

iWfree[J ] = −1
2 h̄

−1

∫

d4x

∫

d4yJ(x)DF (x− y)J(y).
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The only connected Green’s function in this free case are the 1-point and 2-point functions:

G
(1)
conn,free(x) = φ̄free(x) = −ih̄

δ

δJ(x)
iWfree = i

∫

d4yDF (x− y)J(y),

G
(2)
conn,free(x, y) = (−ih̄)2

δ2

δJ(x)δJ(y)
iWfree = h̄DF (x− y).

Note that the propagator contains a factor of h̄. In an interacting theory, like λφ4,

G(2)(x, y) = h̄DF (x− y) +O(λ) corrections.

In an interacting theory, the vertices have factors like−iλ/h̄, while the propagators are

proportional to h̄. Suppose a diagram has I internal lines, V vertices, L loops. Connected

graphs have L = I − V + 1. Graphs go like h̄−V h̄I = h̄L−1. So

W [J ] = W−1h̄
−1 +W0 + h̄W1 + . . . ,

where W−1 are tree-graphs, W0 gives the 1-loop graphs, Wℓ−1 gives ℓ-loop graphs.

• Emphasize that tree graphs are classical. Example: consider L = 1
2∂µφ∂

µφ −
1
2
m2φ2 − 1

4!
λφ4 + φJ , with the source term J . The classical field EOM is

(∂µ∂
µ +m2)φc = −

1

3!
λφ3

c + J(x).

We can solve this classically to zero-th order in λ using (∂µ∂
µ+m2)DF (x−y) = −iδ(x−y):

φ(0)
c (x) =

∫

d4yDF (x− y)iJ(y).

To solve to next order in λ, we plug this back into the above:

φ(1)
c (x) = φ(0)

c (x)− i
1

3!
λ

∫

d4yDF (x− y)φ(0)
c (y)3

Continue this way, to obtain φc(x) =
∑

∞

n=0 φ
(n)
c , where φ

(n)
c (x) ∼ λn, this can be rep-

resented as a sum of tree-level diagrams, with one φ and different numbers of J ’s on

the external legs. This is perturbation theory for the classical field theory. We solve
δ
δφ (S[φ] +

∫

Jφ)|φ=φc
= 0 for φc[J ], and plug it back in to the action and source term, to

get W−1[J ] = S[φc] +
∫

φcJ . The LHS depends on J but not φc, since we solve for φc by
δ

δφc

W−1[J ] = 0. Likewise, S[φc] does not depend on J . This is a Legendre transform:

W−1[J ] = S[φc] +

∫

φcJ, φc =
δ

δJ
W−1[J ], J = −

δ

δφc
S[φc]
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which fits with δ
δJS[φc] = 0. φc =

δ
δJW−1[J ] is the h̄ → 0 limit of φ(x) ≡ 〈0|φ|0〉J/〈0|0〉J .

φc(x) and J(x) are Legendre transform conjugate variables. Recall e.g. in thermody-

namics, dE = TdS − PdV , so E = E(S, V ), and the conjugate variables are T ↔ S and

P ↔ V , we can define e.g. E + PV = H(S, P ), so adding PV to E changes it from being

a function of V to being a function of P , with P = −∂E/∂V and V = ∂H/∂P . Likewise,

above, for S[φc] vs W−1[J ].

• We now extend this to h̄ 6= 0, i.e. the full diagrams including loops:

W [J ] = Γ[φ] +

∫

d4xJ(x)φ(x).

A Legendre transform, with the inverse transform:

Γ[φ] = W [J ]−

∫

d4xJ(x)φ(x).

(The quantities here are not operators.) And

φ(x) =
δW [J ]

δJ(x)
=

〈0|φ(x)|0〉J
〈0|0〉J

, J = −
δ

δφ
Γ[φ].

Here Γ[φ] is the quantum effective action, with

lim
h̄→0

Γ[φ] = Sclassical[φc].

As we will discuss, the point is that W [J ], which contains all connected diagrams, including

loops, can be obtained by tree-level diagrams, provided we replace the classical action with

the quantum effective action. This will be very useful when we start renormalization.

• Aside. We have seen that the loop expansion is an expansion in powers of h̄, since

diagrams go like h̄L−1. Question: are we expanding in h̄ (loops), or in powers of the

small coupling constants, or both? Answer: it’s generally the same expansion. Consider

e.g. λφr interaction. Then a connected diagram with E external lines (amputating their

propagators) and I internal lines and V vertices is ∼ h̄I−V λV . Now we use L = I −

V + 1 and E + 2I = rV (conservation of ends of the lines) to get that the diagram is

∼
(

h̄λ2/(r−2)
)L−1

λE/(r−2), so for fixed E the loop expansion is an expansion in powers of

the effective coupling α ∼ h̄λ2/r−2.

• We can also think of the effective action, Γ[φ], as a generating functional:

Γ[φ] =

∞
∑

n=1

1

n!

∫

d4x1 . . . d
4xnΓ

(n)(x1, . . . xn)φ(x1) . . . φ(xn).
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Again,

Γ[φ] =
1

h̄
(S[φ] +O(h̄)) .

The terms that Γ[φ] generates are called the 1-particle irreducible diagrams,

Γ(n)(x1, . . . xn) = 〈Tφ(x1) . . . φ(xn)〉|1PI .

The definition is that the diagrams are connected, and moreover remains connected upon

removing any one internal progagator (and amputating all external legs).

• We usually compute them in momentum space, taking all external momenta to be

incoming, related to above Γ(n) by Fourier transform.

1PI diagram ≡ iΓ̃(n)(p1, . . . pn),

where the external propagators are amputated, and the (2π)4δ4(
∑

i pi) is omitted. If there

is an interaction like V = gφn/n!, then, at tree-level, Γ̃(n) = −g.

• Draw some examples of momentum space n = 2, 4, 6 point 1PI diagrams in λφ4,

taking all external momenta to be incoming.

• It is convenient to use a special definition for case n = 2 : define the 1PI diagram

sum to be −iΠ′(p). Get the full 2-point function by summing the geometric series of 1PIs:

D(p) =
i

p2 −m2 + iǫ

∞
∑

n=0

[

(−iΠ′(p2))
i

p2 −m2 + iǫ

]n

=
i

p2 −m2 − Π′(p2) + iǫ
.

For n = 2 we define

iΓ̃(2)(p,−p) ≡ 1PI diagram + i(p2 −m2) = i(p2 −m2 − Π′(p2))

So then

D(p) =
i

Γ̃(2)
=

i

p2 −m2 − Π′(p2)
.

Π′(p2) is called the self-energy, like momentum dependent mass term. The special definition

of Γ̃(2) is because D(p) = i/Γ̃(2) will be nice, and allow extending to higher point functions.

• The point of the 1PI diagrams is that the quantum loop corrections are simply

obtained by replacing the vertices with the 1PI greens functions! Indeed, Draw pictures

for n = 2, 4, 6 point functions. Obtain the full W [J ] via tree-graphs assembled from the

1PI building blocks.

• Note that there are are no tree level IPI diagrams for Γ̃(n) except for n = 4 in λφ4,

so Γ̃(n) = −λh̄−1δn,4 +O(h̄0) + . . .. At order h̄0, i.e. 1-loop, note that there are terms for

all even n. (There can not be terms for odd n, because of the φ → −φ symmetry.)
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