
1/14/16 Lecture 4 outline

• Last time,

Z[J(x)] =

∫
[dφ] exp(

i

h̄

∫
d4x[L+ J(x)φ(x)]) = N exp[

i

h̄
Sint[−ih̄

δ

δJ
])Zfree[J ], (1)

Zfree[J ] = Z0[J ] = exp(−1
2
h̄−1

∫
d4xd4yJ(x)DF (x− y)J(y)). (2)

The green’s functions are then given by

G(n)(x1 . . . xn) =

∫
[dφ]φ(x1) . . . φ(xn) exp(

i
h̄
SI [φ]) exp[

i
h̄
Sfree]∫

[dφ] exp( i
h̄
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i
h̄
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,

=
1

Z[J ]

n∏

j=1

(
−ih̄

δ

δJ(xj)

)
· Z[J ]

∣∣
J=0

.

E.g. for λφ4/4! get

G(n)(x1, . . . xn) =
1

Z[J ]

n∏

j=1

(−ih̄
δ

δJ(xj)
)

∞∑

N=1

1

N !

(
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λ

4!h̄

∫
d4y(−i)4

δ4

δJ(y)4

)N

Z0[J ]
∣∣
J=0

.

Consider, for example, the 4-point function G(4)(x1, x2, x3, x4) ≡ 〈Tφ(x1) . . . φ(x4)〉/〈0|0〉.

Draw diagrams. We can choose to normalize Z[J = 0] = 1, since we anyway divide by the

vacuum-to-vacuum amplitude, to cancel the bubble diagrams. For computing S-matrix

elements, we will especially be interested in connected Green’s functions. There are nice

combinatoric formulae. E.g.

∑
all diagrams =

(∑
“connected”

)
· exp(

∑
disconnected vacuum bubbles).

And the vacuum bubble diagrams cancel. We write “connected” because for n > 2 point

functions there are still disconnected diagrams, connected to the external points, included

in this sum. We will not need these either, and will shortly discuss how to eliminate them.

• We got the functional integral to converge via the iǫ, recall it came from evaluating

the gaussian functional integrals like
∫
∞

−∞
dφeiaφ

2

, taking a =real +iǫ. There is another

way, which is often very useful: Wick rotate to Euclidean space. The k0 momentum

integral, like that in

DF (x) =

∫
d4k

(2π)4
i

k2 −m2 + iǫ

can be analytically continued, as long as no poles are crossed. We can ”Wick rotate”

the dk0 by +π/2, so k0 runs from −i∞ to +i∞ along the imaginary axis. This allows
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continuation to k0 = ik4, with k4 real, and k4 runs from −∞ to +∞. So k2 = −k2E , and

d4k = id4kE . To avoid having eikx blow up anywhere, we also continue time: x0 = −ix4, so

d4x = −id4xE . Comment on signs: we rotate k0 = eiαk4 with α running from 0 → π/2,

and then to keep eik0x0 oscillatory we need to rotate by an opposite phase, x0 = e−iαx4.

So x0 = −ix4 at the end. (Note however that this sign choice gives k0x0−k~x = k4x4−~k ·~x

is not 4d rotationally invariant.)

The Feynman propagator, in Euclidean space, is

∆E(x) =

∫
d4kE
(2π)4

e−ikx 1

k2E +m2
,

where we can now drop the iǫ, since it’s no longer needed. Note k2E +m2 is never zero, so

the integrand never has a pole, and the solution ∆E is unique.

The action changes as S =
∫
d4x( 12∂φ∂φ − V ) = i

∫
d4xE(

1
2∂xE

φ∂xE
+ V ) = iSE ,

where SE looks like the energy now, SE = “H”! Then
∫

[dφ] exp[
i

h̄
S] →

∫
[dφ]e−

1

h̄
“H”

which is like the partition function of stat mech (as you saw in your HW)! (But here “H”

is like the Hamiltonian of a theory living in 4 spatial dimensions..). Note h̄ here appears

as does T (temperaure) there, connects intuition of quantum fluctuations with intuition of

thermal fluctuations!

It is sometimes useful to do all Feynman diagram computations in Euclidean space,

and analytically continue back to Minkowski at the end of the day. So

Mink Euc

propagator i
k2

−m2 = −i
k2

E
+m2

1
k2

E
+m2

vertex −ig −g

loop
∫

d4k
(2π)4 = i

∫
d4kE

(2π)4

∫
d4kE

(2π)4 .

Comparing with what we had before, we have dropped some factors of i:

iL+V −I = i,

since (connected) diagrams have L = I − V + 1. So every diagram in the sum just differs

by a factor of i, so the sums work the same as before (no relative differences).

• All disconnected diagrams drop out when we consider S−1: they correspond to e.g.

the 1. The LSZ reduction formula says that we get S − 1 from amputating the external
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propagators and going on shell, ∼
∏n

i=1(p
2
i − m2

i )G̃(p1, . . . pn), where the p2i − m2
i → 0

factors eliminate the external propagators. These factors also eliminate all contributions

from disconnected Green’s functions (draw pictures), since they have less than n external

propagators. So, in the end, we’re only interested in the fully connected diagrams. There

is a generating functional for them for them. (N.B. sometimes people reverse the names

of what I’m calling W and Z. Peskin calls W → E.) Defining,

iW [J ] ≡ lnZ[J ]

iW [J ] is the generating functional for connected Green’s functions

G(n)
conn(x1, . . . xn) =

n∏

j=1

−ih̄δ

δJ(xj)
iW [J ],

i.e.

iW [J ] =

∞∑

n=1

(i/h̄)n

n!

∫
d4x1 . . . d

4xnG
(n)
conn(x1, . . . xn)J(x1) . . . J(xn).

In momentum space, we can write:

iW [J ] =

∞∑

n=1

(i/h̄)n

n!

∫
d4k1
(2π)4

. . .
d4kn
(2π)4

J̃(−k1) . . . J̃(−kn)G̃conn(k1, . . . kn).

• Examples, to illustrate how iW [J ] ≡ lnZ[J ] gives the connected diagrams. First

consider the 1-point function

G(1)
conn(x) = (−ih̄)

δiW

δJ
= (−ih̄)

1

Z[J ]

δZ[J ]

δJ(x)
=

〈0|φ(x)|0〉J
〈0|0〉J

≡ φ(x),

where φ(x) is not an operator – it is the average of the quantum field. Sometimes it is

called φcl, since it behaves like a classical field. But it has quantum effects built in. Picture

this diagrammatically as a propagator connecting the point x to a blob, where the blob

represents a
∑

n λn sum of diagrams. There are no disconnected diagrams, thanks to the

denominator above which subtracts out the disconnected vacuum bubble diagrams.

Now consider the two point function

G(2)(x, y) = (−ih̄)2
δ2

δJ(x)δJ(y)
(iW ) = 〈φ(x)φ(y)〉J − 〈φ(x)〉J〈φ(y)〉J .

Note that 〈φ(x)φ(y)〉 has two types of contributions, connected and disconnected; the 2nd

term precisely cancels off the disconnected ones. The connected one is pictured as a line

connecting x and y, with a single blob propagator, whereas the disconnected contribution

has two disconnected blobs. Similarly δW/δJ3 has terms like 〈φφφ〉−(〈φφ〉〈φ〉+2 terms)+

2〈φ〉〈φ〉〈φ〉, which give precisely 〈φφφ〉connected. Can prove by induction that the log in W

properly subtracts away all non-connected diagrams!
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