
1/12/16 Lecture 3 outline

• Last time,

Z[J(x)] =

∫

[dφ] exp(
i

h̄

∫

d4x[L+ J(x)φ(x)]).

This is a functional: input function J(x) and it outputs a number. Use it to compute

G(n)(x1, . . . xn) = 〈0|T
n
∏

i=1

φ(xi)|0〉/〈0|0〉 = Z[J ]−1
n
∏

j=1

(

−ih̄
δ

δJ(xi)

)

Z[J ]
∣

∣

J=0
.

E.g. for the QFT KG example, free scalar field theory L0 = 1
2 (∂φ)

2 − 1
2m

2φ2 − Jφ has

generating functional

Zfree[J ] = Z0[J ] = exp(−1
2 h̄

−1

∫

d4xd4yJ(x)DF (x− y)J(y)), (1)

with

DF (x− y) ≡

∫

d4k

(2π)4
ie−ik(x−y)

k2 −m2 + iǫ
.

• Let’s double check the factors of h̄ etc, considering an ordinary gaussian integral,
∫

∞

−∞
dφe−bφ2+cφ =

√

π
b
e−c2/4b, as seen by completing the square. We now replace b →

1
2ih̄(−∂2−m2 + iǫ) and c → i

h̄J , so e−c2/4b → e
1
2 (J/h̄)

2(ih̄)(−∂2
−m2

−iǫ)−1

, or more precisely,

the expression (1). As discussed last time, we compute green’s functions from Z[J ] by

acting with φ(x) → h̄
i

δ
δJ(x)

. In particular, we get G
(2)
0 (x, y) = h̄DF (x − y). As another

example, G
(4)
0 (x1, x2, x3, x4) = G

(2)
0 (x1, x2)G

(2)
0 (x3, x4)+(2 permutations).

Of course, we can set h̄ = 1, and restore it at the end using dimensional analysis. But

it’s useful to keep h̄, or the coupling constants, as a loop counting parameter. We’ll discuss

this soon. So for now let’s keep h̄ explicit.

• Sometimes we like to redefine our source, replacing J → h̄J . So we’ll then write

L0 = 1
2
(∂φ)2 − 1

2
m2φ2 − h̄Jφ, and replace (1) with

Zfree[J ] = Z0[J ] = exp(−1
2 h̄

∫

d4xd4yJ(x)DF (x− y)J(y)), (2)

with φ(x) → 1
i

δ
δJ(x) . Either way gives the same answers for the green’s functions, of course,

– it’s just semantics for what we want to call the source.

• Now let’s consider an interacting theory. Notice that

∫

[dφ] exp(
i

h̄
[Sfree + Sint[φ] + h̄

∫

d4xJφ]) = exp[
i

h̄
Sint[−i

δ

δJ
])Zfree[J ].
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So

Z[J ] = N exp[
i

h̄
Sint[−i

δ

δJ
])Zfree[J ], (3)

where N is an irrelevant normalization factor (independent of J). The green’s functions

are then given by

G(n)(x1 . . . xn) =

∫

[dφ]φ(x1) . . . φ(xn) exp(
i
h̄SI [φ]) exp[

i
h̄Sfree]

∫

[dφ] exp( i
h̄
SI [φ]) exp[

i
h̄
Sfree]

,

=
1

Z[J ]

n
∏

j=1

(

−ih̄
δ

δJ(xj)

)

· Z[J ]
∣

∣

J=0
.

(The denominator (in both lines) cancels off the vacuum bubble diagrams, which don’t

depend specifically on the Green’s function.)

• Illustrate the above formulae, and relation to Feynman diagrams, e.g. G(1), G(2)

and G(4) in λφ4 theory. The functional integral accounts for all the Feynman diagrammer;

even symmetry factors etc. come out simply from the derivatives w.r.t. the sources, and

the expanding the exponentials,

G(n)(x1, . . . xn) =
1

Z[J ]

n
∏

j=1

(−i
δ

δJ(xj)
)

∞
∑

N=1

1

N !

(

−i
λ

4!h̄

∫

d4y(−i)4
δ4

δJ(y)4

)N

Z0[J ]
∣

∣

J=0
.

etc. Consider, for example, the 4-point functionG(4)(x1, x2, x3, x4) ≡ 〈Tφ(x1) . . . φ(x4)〉/〈0|0〉

in λ4

4!
φ4. So take 4-fuctional derivatives w.r.t. the source, at points x1 . . . x4, i.e.

δ/δJ(x1) . . . δ/δJ(x4). The O(λ0) term thus comes from expanding the exponent in (2) to

quadratic order (4 J’s), corresponding to the disconnected diagrams with two propagators.

Each propagator ends on a point xi. This is like the 4-point function in the SHO home-

work. Now consider the O(λ) contribution, coming from expanding out the interaction

part of the exponent in (3) to O(λ). There are now 4 extra δ/δJ(y), for a total of 8, so

the contributing term comes from expanding the exponent in (2) to 4-th order, i.e. there

are 4 propagators. This gives the connected term, along with several disconnected terms.

Go through these terms and their combinatorics.
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