1/12/16 Lecture 3 outline

e Last time, .
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This is a functional: input function J(z) and it outputs a number. Use it to compute
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E.g. for the QFT KG example, free scalar field theory Lo = 1(9¢)? — m?¢? — J¢ has

generating functional
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e Let’s double check the factors of h etc, considering an ordinary gaussian integral,

ffo doe —bp%+eh — f e’/ 4 as seen by Completmg the square. We now replace b —

57 (—0% —m? +i€) and ¢ — £J, s0 e7° AN e2(J/h) (i) (0% —m? i)~ 1, or more precisely,
the expression (1). As discussed last time, we compute green’s functions from Z[J] by
acting with ¢(z) — %%(I). In particular, we get G(()Q)(a;,y) = hDp(x —y). As another
example, G(()4) (21,29, x3,24) = G82)<.’L‘1,$2)G82)<.’133,£C4)+(2 permutations).

Of course, we can set h = 1, and restore it at the end using dimensional analysis. But
it’s useful to keep h, or the coupling constants, as a loop counting parameter. We’ll discuss
this soon. So for now let’s keep h explicit.

e Sometimes we like to redefine our source, replacing J — hJ. So we’ll then write

= 1(9¢)? — m?*¢* — hJ ¢, and replace (1) with
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with ¢(x) — = 6 J(m) Either way gives the same answers for the green’s functions, of course,
— it’s just semantics for what we want to call the source.
e Now let’s consider an interacting theory. Notice that
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So
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where N is an irrelevant normalization factor (independent of J). The green’s functions

Z[J] = Nexp|

are then given by
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(The denominator (in both lines) cancels off the vacuum bubble diagrams, which don’t
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depend specifically on the Green’s function.)
e Tllustrate the above formulae, and relation to Feynman diagrams, e.g. G(1), G2
and G® in \¢* theory. The functional integral accounts for all the Feynman diagrammer;

even symmetry factors etc. come out simply from the derivatives w.r.t. the sources, and
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etc. Consider, for example, the 4-point function G (z1, 2, 3, 24) = (T'o(x1) . .. p(4))/(0]0)
n %(f)‘l. So take 4-fuctional derivatives w.r.t. the source, at points xq...x4, i.e.
§/8J(x1)...0/6J(x4). The O(A?) term thus comes from expanding the exponent in (2) to

quadratic order (4 J’s), corresponding to the disconnected diagrams with two propagators.

the expanding the exponentials,

G(n)<.’131,... n = Ziﬁ
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Each propagator ends on a point ;. This is like the 4-point function in the SHO home-
work. Now consider the O(A) contribution, coming from expanding out the interaction
part of the exponent in (3) to O(A). There are now 4 extra §/0.J(y), for a total of 8, so
the contributing term comes from expanding the exponent in (2) to 4-th order, i.e. there
are 4 propagators. This gives the connected term, along with several disconnected terms.

Go through these terms and their combinatorics.



