
3/10/16 Lecture 20 outline

• Last time: the electron loop correction to the photon propagator gave

Π(p2) = −2α

π

∫ 1

0

dxx(1− x)

(

2

ǫ
− γ + log(4π/∆)

)

with ∆ = m2 − x(1− x)p2

QED renormalization: full photon 2-point function ∼ Z3, full electron propagator

∼ Z2, 1PI vertex Γµ ∼ Z−1
1 γµ. Bare and renormalized fields, and counterterms. ψB =

Z
1/2
2 ψR, A

µ
B = Z

1/2
3 Aµ

R, eBZ2Z
1/2
3 = eRZ1. LB = LR + Lc.t..

LR = −1

4
FRµνF

µν
R + ψ̄R(i/∂ − eR /AR −mR)ψR,

Lct = −1

4
δ3(FRµν)

2 + ψ̄R(iδ2/∂ − δ1eR /AR − δm)ψR.

Where δ1 = Z1 − 1, δ2 = Z2 − 1, δ3 = Z3 − 1, and δm = Z2m0 − m. We showed that

the W.T. identity implies that Z1 = Z2, for any species, which ensures that all species

(electrons, muons, etc) couple universally to the gauge field, with same effective charge,

independent of renormalization and RG running effects: eBAB = eRAR (the ∂µ can be

replaced with Dµ).

In particular, the counter-term contributes to iΠµν as δΠ = −(Z3 − 1). So, to one

loop, we get

Π(p2) = −α
π
ǫ−1 2

3
+ (Z3 − 1)(1) + finite.

in MS, choose Z3 to cancel the 1/ǫ term only, so Z3 − 1 = −α
π
ǫ−1 2

3
.

We’ll soon note that ephys =
√
Z3eB , or better α = e2phys/4π = Z3µ

−ǫαB. Write this

as αB = αµǫZα, where

Zα ≡ Z−1
3 ≡ 1 +

∑

k

ak(α)ǫ
−k.

In particular, we found above that a1 = 2α/3π to one-loop order.

• Likewise, can compute the contribution of a virtual photon to the full electron

propagator

S(p) =
i

/p−m− Σ(p) + iǫ
,

where −iΣ is the 1PI contribution to the propagator. E.g. to 1 loop get

−iΣ(p2) = (−ie)2
∫

d4k

(2π)4
−igµν
k2

γµ
i

/p− /k −m
γν .
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The function S(p) has a pole at the physical mass, mphys = m+Σ(0), so the constant

part of Σ shifts the mass. The ∼ /p part of Σ renormalizes the residue of S(p). The residue

is iZ2. Again, we can add counterterms to shift these and preserve a renormalization

condition.

• 1PI vertex for electron interacting with photon, −ieΓµ(p′, p). The tree-level term

is −ieγµ. The photon has momentum q = p′ − p. Can show that Lorentz and kinematic

structure is such that

Z2Γ
µ(p′, p) = γµF1(q

2) + i
σµνqν
2m

F2(q
2),

where σµν = 1
2
i[γµ, γν] and Fi are “form factors.” The electron has magnetic moment

~µ = g(e~S/2m), with g = 2 + 2F2(0). The diagram for F2(0) at one-loop is convergent

(don’t even need to renormalize it), and yields F2(0) = α/2π. The diagram for F1(q
2) is

UV, and also IR divergent at q2 = 0; needs renormalization. Define Γµ(q2 = 0) = Z−1
1 γµ.

The W.T. identity shows F1(0) = 1.

• Just like what we did in λφ4, use the fact that αB is independent of µ to get

0 = ǫαZ−1
3 + β(α, ǫ)Z−1

3 + β(α, ǫ)α
d

dα
Z−1
3 .

where β(α, ǫ) = dα/d lnµ. To have a smooth ǫ→ 0 limit, we need

β(α, ǫ) = −ǫα + β(α),

β(α) = α2 da1
dα

.

Using the above result for a1, we get finally

β(α) =
dα

d lnµ
=

2α2

3π
+ higher loops.

This is the promised beta function of QED. It’s positive, as in λφ4, and every other theory

except non-Abelian gauge theories. Its sign is again related to charge screening, so the

effective charge is small at long distances (IR free) and blows up at short distances (the

Landau pole), as we discussed before. Integrate 1-loop beta function:

α−1(µ) = − 2

3π
ln(

µ

Λ
).

Makes sense only for µ < Λ, i.e. in the IR. Λ is a UV cutoff. Get α → ∞ as µ → Λ; this

is the Landau pole. Looks bad, but we’ll see the the energy scale where it blows up is so
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fantastically large that we don’t need to worry (something new should fix it in the UV,

e.g. grand unification can do the job). It does not run to zero in the IR, because there are

no massless charged particles. It runs toward zero until it gets to the energy scale of the

lightest charged particle, me = 0.5MeV , and then it stops running. So 137 = 3
3π ln(Λ/me).

Gives Λ = me exp(137π), which too huge to worry about the apparent Landau pole there.

(Other charged particles will bring the scale of Λ down to Λ = me exp(137π/Nf) where

Nf is the effective number of charged particles, but it’s still huge.)

• For the 1-loop correction to the 1PI 2-point function for the electron, the counter-

terms plus the virtual photon correction to the electron propagator diagram gives

−iΣ2(p) = −i e2

(4π)d/2

∫ 1

0

dx
Γ(2− 1

2
d)

((1− x)m2 − xµ2 − (x(1− x)p2)2−d/2
((4− ǫ)m− (2− ǫ)/p)

+ i(/pδ2 − δm),

(where µ is a small photon mass, temporarily put in by hand to cure an IR divergence).

In MS this gives to 1-loop

δ2 = − α

2πǫ
, δm =

2α

πǫ
.

• For the 1-loop correction to the vertex, the diagram with a virtual photon, and the

counter-term, contribute to the form factor F1(q
2). (Again, the F2(q

2) loop correction is

finite.)

Γµ(p, p
′) =− ie)2

∫

ddq

(2π)d
γα

i

/p′ + q/−m
γµ

i

/p+ q/−m
γβ(

−igαβ
k2

) + δ1γµ.

In MS, get δ1 = −α/2πǫ. Note δ1 = δ2.

• As we said already, gauge invariance requires Z1 = Z2, so δ1 = δ2 must hold exactly.

Then the counterterm pieces have the same gauge invariance. (This is a special case of a

more general Ward identity, stating Γµ(p, p) = −∂pµΣ(p).)

So ephys =
√
Z3eB . This shows that renormalized charge is same for all species. E.g.

electron and muon and anti-proton all have exactly the same effective charge.

• QED vs QED. In QED, we have gauge invariance ψ → eief(x)ψ, local U(1)

transformations. Generalize to local SU(Nc) gauge transformations: ψ → Uf (x)ψ =

exp(igT afa(x))ψ, where T
a are traceless, Hermitian Nc ×Nc matrices (a = 1 . . .N2

c − 1),

and ψ is a Nc column vector. Gauge conserved color charge. Need covariant derivatives,

∂µ → Dµ = ∂µ − igAa
µT

a, i.e. introduce gauge fields, “gluons”. The Ta matrices do

not commute, [T a, T b] = ifabcT
c: the group is “non-Abelian.” (They are normalized b

3



TrT aT b = 1
2δ

ab, e.g. for SU(2), T a = σa, the Pauli matrices.) The effect of this is that

the Aa
µ kinetic terms are more complicated. The physics of this is that the gluons carry

color charge (unlike the photon, which carries no electric charge).

Gauge transformation: Dµψ → Df
µU

fψ = UfDµψ, i.e. Dµ → UDµU
−1, i.e. Af

µ =

UAf
µU

−1 − ig−1(∂µU)U−1.

Field strength: [Dµ, Dν ] = −igFµν , i.e. Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ], i.e. F a
µν =

∂µA
a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν .

Lagrangian

Lgaugekinetic = −1

2
TrFµνF

µν = −1

4
F a
µνF

µνa, Lferm = ψ̄(i /D −m)ψ.

Some parts are similar to QED, e.g. the gauge field propagator is iDab
µν = −iδab

k2+iǫ (gµν −
(ξ − 1)kµkν/k2). Some differences from QED: since gluons are charged, get 3 and 4 gluon

diagrams, as seen from expanding Lgaugekinetic. These yield added contributions to 1-loop

correction to gluon propagator. (We also have to gauge fix and consequently add Faddeev

Popov ghosts, e.g. gauge fixing by G(A) = ∂µAµ − ω(x) leads to the FP determinant

det( δG(Aα)
δα ) ∼ det(∂µDµ) and then Lg.f.+ghost = − 1

2ξ (∂µA
µ)− c†∂µDµc. Ghosts only ap-

pear in closed loops, where the contribution has a minus sign since they’re anticommuting

fields.)

• Recall e+e− → µ+µ− at tree level in QED, with total cross section σ =
4πα2

3s

√

1− m2
µ

s (1+
m2

µ

2s ) ≈
4πα2

3s at high energy. The total cross section for e+e− → hadrons

at high energy is the same, up to a factor of 3
∑

iQ
2
i , where Qi accounts for the electric

charge of the quarks and 3 accounts for their color. This gave an experimental verification

of 3 colors.

• Renormalization.

Consider gauge boson 1PI loop contribution, i(p2gµν − pµpν)δabΠ(p2). Fermions con-

tribute

Π(p2) ⊃ − g2

16π2

4

3
NfT2(r)Γ(2− 1

2d) + . . . .

Now add 3 diagrams: two with internal gluons, and one with internal ghost. Each is sepa-

rately quadratically divergent and would induce a gauge boson mass. But these problems

cancel in the sum. The upshot of the sum is

Π(p2) ⊃ − g2

16π2
(−(

13

6
− 1

2ξ))C(G)Γ(2−
1
2d) + . . . .
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To compute the beta function, must account for loop diagrams involving the fermion

vertex. It’s somewhat involved (see Peskin). But there is a nice way to determine it from

the gauge field propagator in what’s known as background field gauge, where one includes

a classical background for the field and gauge fixes around that.

Get finally

β(α) =
α2

6π
(−11Nc + 2Nf ) .

(More generally, replace Nc → C2(G) and 2Nf → 4nfT2(r).) The flavors contribute

positively, as in QED. But the colors contribute negatively: they anti-screen charges! So

the beta function can be negative, if 11Nc > 2Nf . This is asymptotic freedom. Integrating

the 1-loop result gives

α(µ)−1 =
(11Nc − 2Nf )

6π
ln(

µ

Λ
).

To have α > 0, we need µ > Λ (opposite from QED). Note α(µ → ∞) → 0, weak in

UV = asymptotic freedom. Explains successes of parton model (quarks) for high energy

scattering. For QCD, Nc = 3, and Nf = 6. For energies below the top and bottom mass,

use Neff
f = 4. Observe e.g. α(100GeV ) ∼ 0.1, so Λ ∼ 200MeV .

On the other hand, α → ∞ for µ → Λ: forces are strong in IR, below scale Λ. Can

explain confinement of quarks (there is a million dollar prize, waiting to be collected, if

you prove it in detail)!

• Phases of QCD.
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