
3/8/16 Lecture 19 outline

• Last time: QED at tree level has interaction vertex −ieγµ and propagators

Dµν =
−i

k2
[gµν −

kµkν
k2

+ ξ
kµkν
k2

],
i

/k −m+ iǫ
,

(Popular choices: ξ = 1 is Feynman propagator, ξ = 0 is Landau gauge propagator.

Physics is ξ independent (result of gauge invariance, which yields Ward-Takahashi identi-

ties). Let’s choose to use Feynman gauge.) The photon has 1PI 2-point function iΠµν(k) =

(p2gµν − pµpν)Π(k2). Recall that the 1PI diagrams are defined with the external propaga-

tors amputated, and the full propagator is a geometric series: full = tree
∑

∞

n=0(1PI ·tree)
n.

Writing it in Feynman gauge, the full propagator is −igµν/p
2(1− Π(p2)). Assuming that

Π(p2) is regular at p2 = 0, get pole at p2 = 0 with residue Z3 ≡ (1− Π(0))−1.

Likewise, for the electron propagator, defining the 1PI vertex to be −iΣ(p), the elec-

tron has the full propagator S(p) = i/(/p − m − Σ(p)), where for p near m, S(p) =

iZ2/(/p−m). The 1PI interaction vertex (with electron having incoming momentum p (and

outgoing momentum p+k) and photon having incoming momentum k) is −ieΓµ(p+k, p),

where for k → 0, Γµ(p+ k, p) → Z−1
1 γµ.

• The W-T identity is

S(p+ k)(−iekµ)Γ
µ(p+ k, p)S(p) = e(S(p)− S(p+ k))

So

−ikµΓ
µ(pk, p) = S−1(p+ k)− S−1(p)

It’s easily verified to work for the free propagators, and the W-T identity shows it’s

an exact result in the full, interacting theory. Taking p near on-shell and k near 0, this

gives Z1 = Z2; this is an important consequence of gauge invariance. As we’ll see more

below, among other things, it ensures that e.g. the electron and the muon couple to the

gauge field with the same effective charge.

• Compute the correction to the photon propagator from a virtual electron/positron

loop:

iΠµν(q) = −(−ie)2
∫

d4k

(2π)4
tr

(

γµ
i

/k −m
γν

i

/k + q/−m

)

.

Combine denominators using Feynman parameter

1

(k2 −m2)((k + q)2 −m2
=

∫ 1

0

dx
1

(ℓ2 + x(1− x)q2 −m2)2

1



with ℓ = k + xq. Go to Euclidean space and do integrals using our previous tables of

integrals in dim-reg to find

Π(p2) = −
8e2

(4π)d/2
Γ(2− 1

2
d)

∫ 1

0

dxx(1− x)∆
1
2
d−2,

with ∆ = m2 − x(1− x)p2. Evaluating for d = 4− ǫ,

Π(p2) = −
2α

π

∫ 1

0

dxx(1− x)

(

2

ǫ
− γ + log(4π/∆)

)

.

We’ll need to renormalize this.

• QED renormalization, similar to what we did in λφ4. Bare and renormalized fields,

and counterterms. ψB = Z
1/2
2 ψR, A

µ
B = Z

1/2
3 Aµ

R, eBZ2Z
1/2
3 = eRZ1. LB = LR + Lc.t..

LR = −
1

4
FRµνF

µν
R + ψ̄R(i/∂ − eR /AR −mR)ψR,

Lct = −
1

4
δ3(FRµν)

2 + ψ̄R(iδ2/∂ − δ1eR /AR − δm)ψR.

Where δ1 = Z1 − 1, δ2 = Z2 − 1, δ3 = Z3 − 1, and δm = Z2m0 −m.

In particular, the counter-term contributes to iΠµν as δΠ = −(Z3 − 1).

• Let’s note some other interesting things about the finite part of Π(p2). Π(p2) has a

branch cut starting at p2 = 4m2, and its imaginary part above and below the cut have

Im(Π(p2 ± iǫ) = ∓
α

3

√

1−
4m2

p2
(1 +

2m2

p2
),

which is related by the optical theorem to the total cross section for creating an on-shell

fermion-antifermion pair,
dσ

dΩ
=

|~p|

32π2s3/2
1

4

∑

spins

|M|2.
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