3/3/16 Lecture 18 outline

• Last time: Would like to integrate only over a slice of inequivalent gauge fields, without integrating over the gauge orbits. Need to do this, since otherwise there is no well defined B^{-1} . Recall $S = \int d^4x \left[-\frac{1}{4}\right]$ $\frac{1}{4}F_{\mu\nu}^2$] = $\frac{1}{2}\int d^4k A_\mu(x) (\partial^2 g^{\mu\nu} - \partial^\mu \partial^\nu) A_\nu(x)$. Note action vanishes if $\tilde{A}_{\mu}(k) = k_{\mu}\alpha(k)$. Gauge invariance. $A_{\mu}^{T} = P_{\mu\nu}A^{\nu}$, $P_{\mu\nu} = g_{\mu\nu} - \partial_{\mu}\partial_{\nu}/\partial^{2}$. $-\frac{1}{4}$ $\frac{1}{4}F_{\mu\nu}F^{\mu\nu} = \frac{1}{2}A_{\mu}^{T}\partial^{2}g^{\mu\nu}A_{\nu}^{T}$. Can't invert kinetic terms uniquely to find Green's function. We need to fix the gauge.

The functional integral should be over $\int [dA^{\mu}]/(GE)$, where we divide by the volume of the gauge equivalent orbits. The gauge equivalent orbits are associated with gauge transformations $\alpha(x)$, e.g. $A_{\mu} \to A_{\mu} + \partial_{\mu} \alpha(x)$ in the Abelian case. We want to do the functional integral over A^{μ} , dividing out by the $\alpha(x)$. Get

$$
\int [dA] \Delta \delta(G[A]) \exp(iS[A]).
$$

where $G(A) = 0$ is some gauge fixing condition and Δ is the Faddeev-Popov determinant:

$$
\Delta = \det \left(\frac{\delta G(A^{\alpha})}{\delta \alpha} \right)_{G=0}
$$

.

• Take e.g. $G = \partial^{\mu} A_{\mu} - f(x)$ for some function $f(x)$. Then $\Delta \sim \det(\partial^2)$ is a constant. Get

$$
e^{iW} = N \int (dA)e^{iS} \delta(\partial^{\mu} A_{\mu} - f) = N \int [dA][df] e^{iS} \delta(\partial^{\mu} A_{\mu} - f)G(f) = N \int [dA]e^{iS} G(\partial A),
$$

for arbitrary functional G. Choose $G(f) = \exp(-\frac{1}{2})$ $\frac{1}{2}i\xi^{-1}\int d^4x f^2$, for some real number ξ . Get

$$
e^{iW} = N \int [dA] \exp(iS - \frac{1}{2}\xi^{-1} \int d^4x (\partial^{\mu} A_{\mu})^2).
$$

Then get for the propagator

$$
D_{\mu\nu} = \frac{-i}{k^2} [g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2} + \xi \frac{k_{\mu}k_{\nu}}{k^2}].
$$

Popular choices: $\xi = 1$ is Feynman propagator, $\xi = 0$ is Landau gauge propagator. Physics is ξ independent (result of gauge invariance, which yields Ward-Takahashi identities). Let's choose to use Feynman gauge.)

• Gauge invariance shows up in the amplitudes by what's know as the Ward-Takahashi identities. Consider a green's function $\langle 0|Tj^{\mu}(x)\prod_i \Phi(x_i)|0\rangle$, where j^{μ} is the conserved

current and $\Phi(x_i)$ are other fields (they could be fermions). Much as you saw in a HW exercise, using the functional integral it is seen (by going through the symmetry transformation change of variables a-la Noether's procedure) that current conservation holds up to $\delta(x-x_i)$ contact terms. For example,

$$
i\partial_{\mu}\langle 0|Tj^{\mu}(x)\psi(x_1)\overline{\psi}(x_2)|0\rangle = ie(\delta(x-x_2)-\delta(x-x_1))\langle 0|T\psi(x_1)\overline{\psi}(x_2)|0\rangle.
$$

In momentum space,

$$
-ik_{\mu}\mathcal{M}^{\mu}(k,p,q) = -ie\mathcal{M}_0(p,q-k) + ie\mathcal{M}_r(p+k,q).
$$

Amplitudes with more external states are similar, with a sum over all external states weighted by their charge. When we go to S-matrix elements using the LSZ procedure, the terms on the RHS vanish when we amputate the external legs and go on-shell, so current conservation is indeed satisfied in S-matrix elements.

• Feynman rules for e.g. QED: propagator for free, spin $1/2$ fermions:

$$
\frac{i}{k-m+i\epsilon},
$$

and gauge field

$$
D_{\mu\nu} = \frac{-i}{k^2} [g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2} + \xi \frac{k_{\mu}k_{\nu}}{k^2}]
$$

Popular choices: $\xi = 1$ is Feynman propagator, $\xi = 0$ is Landau gauge propagator. Physics is ξ independent (result of gauge invariance, which yields Ward-Takahashi identities). Let's choose to use Feynman gauge.)

Recall QED Feynman rules, e.g. vertex: $-ie\gamma^{\mu}$.

• The photon has 1PI propagator $i\Pi^{\mu\nu}(k) = (p^2 g^{\mu\nu} - p^{\mu} p^{\nu}) \Pi(k^2)$. Recall that the 1PI diagrams are defined with the external propagators amputated, and the full propagator is a geometric series: full = tree $\sum_{n=0}^{\infty} (1PI \cdot \text{tree})^n$. Writing it in Feynman gauge, the full propagator is $-i g_{\mu\nu}/p^2(1-\Pi(p^2))$. Assuming that $\Pi(p^2)$ is regular at $p^2=0$, get pole at $p^2 = 0$ with residue $Z_3 \equiv (1 - \Pi(0))^{-1}$.

Likewise, for the electron propagator, defining the 1PI vertex to be $\Sigma(p)$, the electron has the full propagator $S(p) = i/(p - m - \Sigma(p))$, where for p near m, $S(p) = iZ_2/(p - m)$. The 1PI interaction vertex (with electron having incoming momentum p (and outgoing momentum $p + k$) and photon having incoming momentum k) is $-i e \Gamma^{\mu} (p + k, p)$, where for $k \to 0$, $\Gamma^{\mu}(p+k, p) \to Z_1^{-1}$ $1^{-1}\gamma^{\mu}.$