
3/3/16 Lecture 18 outline

• Last time: Would like to integrate only over a slice of inequivalent gauge fields,

without integrating over the gauge orbits. Need to do this, since otherwise there is no

well defined B−1. Recall S =
∫

d4x[−1

4
F 2

µν ] =
1

2

∫

d4kAµ(x)(∂
2gµν − ∂µ∂ν)Aν(x). Note

action vanishes if Ãµ(k) = kµα(k). Gauge invariance. AT
µ = PµνA

ν , Pµν = gµν −∂µ∂ν/∂
2.

−1

4
FµνF

µν = 1

2
AT

µ∂
2gµνAT

ν . Can’t invert kinetic terms uniquely to find Green’s function.

We need to fix the gauge.

The functional integral should be over
∫

[dAµ]/(GE), where we divide by the volume

of the gauge equivalent orbits. The gauge equivalent orbits are associated with gauge

transformations α(x), e.g. Aµ → Aµ + ∂µα(x) in the Abelian case. We want to do the

functional integral over Aµ, dividing out by the α(x). Get

∫

[dA]∆δ(G[A]) exp(iS[A]).

where G(A) = 0 is some gauge fixing condition and ∆ is the Faddeev-Popov determinant:

∆ = det

(

δG(Aα)

δα

)

G=0

.

• Take e.g. G = ∂µAµ−f(x) for some function f(x). Then ∆ ∼ det(∂2) is a constant.

Get

eiW = N

∫

(dA)eiSδ(∂µAµ− f) = N

∫

[dA][df ]eiSδ(∂µAµ− f)G(f) = N

∫

[dA]eiSG(∂A),

for arbitrary functional G. Choose G(f) = exp(−1

2
iξ−1

∫

d4xf2), for some real number ξ.

Get

eiW = N

∫

[dA] exp(iS − 1

2
ξ−1

∫

d4x(∂µAµ)
2).

Then get for the propagator

Dµν =
−i

k2
[gµν −

kµkν
k2

+ ξ
kµkν
k2

].

Popular choices: ξ = 1 is Feynman propagator, ξ = 0 is Landau gauge propagator. Physics

is ξ independent (result of gauge invariance, which yields Ward-Takahashi identities). Let’s

choose to use Feynman gauge.)

• Gauge invariance shows up in the amplitudes by what’s know as the Ward-Takahashi

identities. Consider a green’s function 〈0|Tjµ(x)
∏

i Φ(xi)|0〉, where j
µ is the conserved

1



current and Φ(xi) are other fields (they could be fermions). Much as you saw in a HW

exercise, using the functional integral it is seen (by going through the symmetry transfor-

mation change of variables a-la Noether’s procedure) that current conservation holds up

to δ(x− xi) contact terms. For example,

i∂µ〈0|Tj
µ(x)ψ(x1)ψ(x2)|0〉 = ie(δ(x− x2)− δ(x− x1))〈0|Tψ(x1)ψ(x2)|0〉.

In momentum space,

−ikµM
µ(k, p, q) = −ieM0(p, q − k) + ieM′(p+ k, q).

Amplitudes with more external states are similar, with a sum over all external states

weighted by their charge. When we go to S-matrix elements using the LSZ procedure, the

terms on the RHS vanish when we amputate the external legs and go on-shell, so current

conservation is indeed satisfied in S-matrix elements.

• Feynman rules for e.g. QED: propagator for free, spin 1/2 fermions:

i

/k −m+ iǫ
,

and gauge field

Dµν =
−i

k2
[gµν −

kµkν
k2

+ ξ
kµkν
k2

]

Popular choices: ξ = 1 is Feynman propagator, ξ = 0 is Landau gauge propagator. Physics

is ξ independent (result of gauge invariance, which yields Ward-Takahashi identities). Let’s

choose to use Feynman gauge.)

Recall QED Feynman rules, e.g. vertex: −ieγµ.

• The photon has 1PI propagator iΠµν(k) = (p2gµν−pµpν)Π(k2). Recall that the 1PI

diagrams are defined with the external propagators amputated, and the full propagator is

a geometric series: full = tree
∑

∞

n=0
(1PI · tree)n. Writing it in Feynman gauge, the full

propagator is −igµν/p
2(1− Π(p2)). Assuming that Π(p2) is regular at p2 = 0, get pole at

p2 = 0 with residue Z3 ≡ (1− Π(0))−1.

Likewise, for the electron propagator, defining the 1PI vertex to be Σ(p), the electron

has the full propagator S(p) = i/(/p−m−Σ(p)), where for p near m, S(p) = iZ2/(/p−m).

The 1PI interaction vertex (with electron having incoming momentum p (and outgoing

momentum p + k) and photon having incoming momentum k) is −ieΓµ(p + k, p), where

for k → 0, Γµ(p+ k, p) → Z−1

1
γµ.
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