3/3/16 Lecture 18 outline
e Last time: Would like to integrate only over a slice of inequivalent gauge fields,

without integrating over the gauge orbits. Need to do this, since otherwise there is no
well defined B~!. Recall S = [d*z[—1F3)] = 5 [ d*kA,(x)(8%g" — 010”)A,(z). Note
action vanishes if A, (k) = k,a(k). Gauge invariance. Al'= P, AY, Py, = g — 0,0, /0.
—iF Y = %AZ@QgWAZ. Can’t invert kinetic terms uniquely to find Green’s function.
We need to fix the gauge.

The functional integral should be over [[dA*]/(GE), where we divide by the volume
of the gauge equivalent orbits. The gauge equivalent orbits are associated with gauge
transformations «a(z), e.g. A, = A, + J,a(z) in the Abelian case. We want to do the

functional integral over A*, dividing out by the a(x). Get
/[dA]A(F(G[A]) exp(iS[A]).

where G(A) = 0 is some gauge fixing condition and A is the Faddeev-Popov determinant:

«

e Take e.g. G = 0" A, — f(x) for some function f(z). Then A ~ det(d?) is a constant.
Get

W =N [(dA)eS5(0" 4, - 1) = N[04 5(0" 4, - NG = N [laAeG(04),

for arbitrary functional G. Choose G(f) = exp(—%if‘l [ d*x f?), for some real number &.
Get

W = N/[dA] exp(iS — %5_1/d4x(3”Au)2).
Then get for the propagator
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Popular choices: ¢ = 1 is Feynman propagator, £ = 0 is Landau gauge propagator. Physics
is ¢ independent (result of gauge invariance, which yields Ward-Takahashi identities). Let’s
choose to use Feynman gauge.)

e Gauge invariance shows up in the amplitudes by what’s know as the Ward-Takahashi

identities. Consider a green’s function (0|7j*(z) [[, ®(z;)|0), where j* is the conserved

1



current and ®(z;) are other fields (they could be fermions). Much as you saw in a HW
exercise, using the functional integral it is seen (by going through the symmetry transfor-
mation change of variables a-la Noether’s procedure) that current conservation holds up

to d(x — z;) contact terms. For example,
10, (013" (2)(21)(22)]0) = ie(d(x — x2) — 6(x — 21))(0T(21)3(x2)]0).
In momentum space,
—ik, MH"(k,p,q) = —ieMo(p,q — k) +ieM,(p+ k, q).

Amplitudes with more external states are similar, with a sum over all external states
weighted by their charge. When we go to S-matrix elements using the LSZ procedure, the
terms on the RHS vanish when we amputate the external legs and go on-shell, so current
conservation is indeed satisfied in S-matrix elements.
e Feynman rules for e.g. QED: propagator for free, spin 1/2 fermions:
1
F—m+ie’
and gauge field
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Popular choices: ¢ = 1 is Feynman propagator, £ = 0 is Landau gauge propagator. Physics
is £ independent (result of gauge invariance, which yields Ward-Takahashi identities). Let’s
choose to use Feynman gauge.)

Recall QED Feynman rules, e.g. vertex: —ievy*.

e The photon has 1PI propagator ilT1*" (k) = (p?g"” — pHp”)II(k?). Recall that the 1PI
diagrams are defined with the external propagators amputated, and the full propagator is
a geometric series: full = tree - ((1PI - tree)™. Writing it in Feynman gauge, the full
propagator is —ig,,, /p*(1 — II(p?)). Assuming that II(p?) is regular at p? = 0, get pole at
p? = 0 with residue Z3 = (1 — I1(0)) .

Likewise, for the electron propagator, defining the 1PI vertex to be X(p), the electron
has the full propagator S(p) = i/(p — m — X(p)), where for p near m, S(p) = iZa/(p —m).
The 1PI interaction vertex (with electron having incoming momentum p (and outgoing
momentum p + k) and photon having incoming momentum k) is —iel'’*(p + k, p), where
for k — 0, TH(p + k,p) — Z] 4.



