3/1/16 Lecture 17 outline

• Last time: Recall spin 1 gauge field canonical quantization, and A_μ as an operator. Recall gauge invariance of \mathcal{L}_{EM} , needed to avoid having wrong sign kinetic term for longitudinal polarization terms.

• Functional integral for gauge fields. Important point: gauge invariance. Write $A = A_{\mu}dx^{\mu}$. Recall gauge symmetry $A \to A^{\alpha} = A + d\alpha(x)$, with $\psi_i \to e^{-iq_i\alpha(x)}\psi$. Redundancy in description, can only observe gauge invariant quantities. Need to replace $\partial_\mu \psi_i \to D_\mu \psi_i \equiv (\partial_\mu + i q_i A_\mu) \psi_i$. Then $D_\mu^\alpha \psi_i^\alpha = e^{-i q_i \alpha} D_\mu \psi_i$ transforms nicely, with just an overall phase, and $\bar{\psi}_i D_\mu \psi_i$ is gauge invariant. So the Dirac lagrangian, $\bar{\psi}(iD\!\!\!\!/ - m)\psi$ is gauge invariant.

The terms linear in A_μ give $\mathcal{L} \supset -A_\mu j^\mu$, with j^μ the conserved current.

• In the functional integral, will have $\int [dA] \exp(iS)$. Integration measure must be gauge invariant, implies it gets a factor of gauge orbit volume. Would like to integrate only over a slice of inequivalent gauge fields, without integrating over the gauge orbits. Need to do this, since otherwise there is no well defined B^{-1} . Recall $S = \int d^4x \left[-\frac{1}{4}\right]$ $\frac{1}{4}F_{\mu\nu}^{2}]=$ 1 $\frac{1}{2} \int d^4 k A_\mu(x) (\partial^2 g^{\mu\nu} - \partial^\mu \partial^\nu) A_\nu(x)$. Note action vanishes if $\tilde{A}_\mu(k) = k_\mu \alpha(k)$. Gauge invariance. $A_{\mu}^{T} = P_{\mu\nu}A^{\nu}, P_{\mu\nu} = g_{\mu\nu} - \partial_{\mu}\partial_{\nu}/\partial^{2}$. $-\frac{1}{4}$ $\frac{1}{4}F_{\mu\nu}F^{\mu\nu} = \frac{1}{2}A_{\mu}^{T}\partial^{2}g^{\mu\nu}A_{\nu}^{T}$. Can't invert kinetic terms uniquely to find Green's function. We need to fix the gauge.

The functional integral should be over $\int [dA^{\mu}]/(GE)$, where we divide by the volume of the gauge equivalent orbits. The gauge equivalent orbits are associated with gauge transformations $\alpha(x)$, e.g. $A_{\mu} \to A_{\mu} + \partial_{\mu} \alpha(x)$ in the Abelian case. We want to do the functional integral over A^{μ} , dividing out by the $\alpha(x)$.

(Here are some details: Do this via

$$
1 = \int [d\alpha(x)] \delta(G(A^{\alpha})) \det \left(\frac{\delta G(A^{\alpha})}{\delta \alpha}\right) = \Delta \int [d\alpha] \delta(G(A^{\alpha})),
$$

where $G(A) = 0$ is some gauge fixing condition, e.g. Lorentz gauge, $G(A) = \partial_{\mu}A^{\mu}$ and

$$
\Delta = \det \left(\frac{\delta G(A^{\alpha})}{\delta \alpha} \right)_{G=0}
$$

.

 Δ is the Faddeev-Popov determinant. Write the functional integral as (using the gauge invariance of measure and action)

$$
\int [d\alpha][dA] \Delta \delta(G[A]) \exp(iS[A]).
$$

Have factored out the integral over the group volume. We can then just easily divide out by $|d\alpha|$, just cross it out. What's left is the gauge fixing delta function, and appropriate determinant factor.