3/1/16 Lecture 17 outline

• Last time: Recall spin 1 gauge field canonical quantization, and A_{μ} as an operator. Recall gauge invariance of \mathcal{L}_{EM} , needed to avoid having wrong sign kinetic term for longitudinal polarization terms.

• Functional integral for gauge fields. Important point: gauge invariance. Write $A = A_{\mu}dx^{\mu}$. Recall gauge symmetry $A \to A^{\alpha} = A + d\alpha(x)$, with $\psi_i \to e^{-iq_i\alpha(x)}\psi$. Redundancy in description, can only observe gauge invariant quantities. Need to replace $\partial_{\mu}\psi_i \to D_{\mu}\psi_i \equiv (\partial_{\mu} + iq_iA_{\mu})\psi_i$. Then $D^{\alpha}_{\mu}\psi^{\alpha}_i = e^{-iq_i\alpha}D_{\mu}\psi_i$ transforms nicely, with just an overall phase, and $\bar{\psi}_i D_{\mu}\psi_i$ is gauge invariant. So the Dirac lagrangian, $\bar{\psi}(i\not{\!\!D} - m)\psi$ is gauge invariant.

The terms linear in A_{μ} give $\mathcal{L} \supset -A_{\mu}j^{\mu}$, with j^{μ} the conserved current.

• In the functional integral, will have $\int [dA] \exp(iS)$. Integration measure must be gauge invariant, implies it gets a factor of gauge orbit volume. Would like to integrate only over a slice of inequivalent gauge fields, without integrating over the gauge orbits. Need to do this, since otherwise there is no well defined B^{-1} . Recall $S = \int d^4x [-\frac{1}{4}F_{\mu\nu}^2] = \frac{1}{2} \int d^4k A_{\mu}(x) (\partial^2 g^{\mu\nu} - \partial^{\mu} \partial^{\nu}) A_{\nu}(x)$. Note action vanishes if $\tilde{A}_{\mu}(k) = k_{\mu}\alpha(k)$. Gauge invariance. $A^T_{\mu} = P_{\mu\nu}A^{\nu}$, $P_{\mu\nu} = g_{\mu\nu} - \partial_{\mu}\partial_{\nu}/\partial^2$. $-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} = \frac{1}{2}A^T_{\mu}\partial^2 g^{\mu\nu}A^T_{\nu}$. Can't invert kinetic terms uniquely to find Green's function. We need to fix the gauge.

The functional integral should be over $\int [dA^{\mu}]/(GE)$, where we divide by the volume of the gauge equivalent orbits. The gauge equivalent orbits are associated with gauge transformations $\alpha(x)$, e.g. $A_{\mu} \to A_{\mu} + \partial_{\mu}\alpha(x)$ in the Abelian case. We want to do the functional integral over A^{μ} , dividing out by the $\alpha(x)$.

(Here are some details: Do this via

$$1 = \int [d\alpha(x)]\delta(G(A^{\alpha})) \det\left(\frac{\delta G(A^{\alpha})}{\delta \alpha}\right) = \Delta \int [d\alpha]\delta(G(A^{\alpha})),$$

where G(A) = 0 is some gauge fixing condition, e.g. Lorentz gauge, $G(A) = \partial_{\mu}A^{\mu}$ and

$$\Delta = \det\left(\frac{\delta G(A^{\alpha})}{\delta \alpha}\right)_{G=0}$$

 Δ is the Faddeev-Popov determinant. Write the functional integral as (using the gauge invariance of measure and action)

$$\int [d\alpha] [dA] \Delta \delta(G[A]) \exp(iS[A]).$$

Have factored out the integral over the group volume. We can then just easily divide out by $[d\alpha]$, just cross it out. What's left is the gauge fixing delta function, and appropriate determinant factor.