• Last time,

$$\beta(\lambda) \equiv \frac{d}{d\ln\mu}\lambda_R$$
$$\gamma = \frac{1}{2}\frac{d}{d\ln\mu}\ln Z_\phi$$
$$\gamma_m = \frac{d\ln m_R}{d\ln\mu}.$$

E.g. for $\lambda \phi^4$,

$$\beta(\lambda, \epsilon) = -\epsilon\lambda + \beta(\lambda)$$
$$\beta(\lambda) = \lambda^2 \frac{da_1}{d\lambda}$$
$$\lambda^2 \frac{da_{k+1}}{d\lambda} = \beta(\lambda) \frac{d}{d\lambda} (\lambda a_k),$$
$$\delta_m = \frac{\lambda m^2}{16\pi^2} \frac{1}{\epsilon}, \qquad \delta_\lambda = \frac{3\lambda^2}{16\pi^2} \frac{1}{\epsilon}, \qquad \delta_Z = 0.$$

So we find $a_1(\lambda) = +3\lambda/16\pi^2$ to one loop. This gives

$$\beta(\lambda) = \frac{3\lambda^2}{16\pi^2} + \mathcal{O}(\lambda^3)$$

• Likewise,

$$\gamma_{\phi}(\lambda,\epsilon) = \frac{1}{2} \frac{d}{d\ln\mu} \ln Z_{\phi}$$

where

$$Z_{\phi} = 1 + \sum_{k} Z_{\phi}^{-k}(\lambda) \epsilon^{-k}.$$

 So

$$\gamma_{\phi}(\lambda,\epsilon) = \frac{1}{2}\beta(\lambda,\epsilon)\frac{d}{d\lambda}\ln Z_{\phi}.$$

Using $\beta(\lambda, \epsilon) = -\epsilon \lambda + \beta(\lambda)$, we get

$$\gamma_{\phi} = -\frac{1}{2}\lambda \frac{d}{d\lambda} Z_{\phi}^{(1)}.$$

We similarly have $m_B^2 = (m^2 + \delta_{m^2}) Z_{\phi}^{-1} \equiv Z_m m^2$ and

$$\gamma_m(\lambda) = \frac{1}{2} \frac{d\ln m^2}{d\ln \mu} = -\frac{1}{2} \frac{d\ln Z_m}{d\ln \mu} = -\frac{1}{2} \beta \frac{d\ln Z_m}{d\lambda} = \frac{1}{2} \lambda \frac{dZ_m^{(1)}}{d\lambda}$$

where $Z_m^{(1)}$ means the coefficient of $1/\epsilon$. In all these cases, only the coefficient of $1/\epsilon$ matters. In particular, for $\lambda \phi^4$ we have

$$\gamma_m(\lambda) = \frac{1}{2}\lambda \frac{dZ_m^{(1)}}{d\lambda} = \frac{1}{2}\frac{\lambda}{16\pi^2} - \frac{5}{12}\frac{\lambda^2}{6(16\pi^2)^2} + \dots$$

where $Z_m^{(1)}$ means the coefficient of $1/\epsilon$ and ... are higher orders in perturbation theory, and

$$\gamma_{\phi} = -\frac{1}{2}\lambda \frac{d}{d\lambda} Z_{\phi}^{(1)} = \frac{1}{12} \frac{\lambda^2}{(16\pi^2)^2} + \dots$$

For any gauge invariant field ϕ , we always have $\gamma_{\phi} \ge 0$, where $\gamma_{\phi} = 0$ iff it is a free field. This follows from the spectral decomposition result that $Z \le 1$.

The anomalous dimension γ_{ϕ} is an additional quantum correction to the classical scaling dimension of the field: $\Delta(\mathcal{O}) = \Delta_{cl}(\mathcal{O}) + \gamma_{\mathcal{O}}$, e.g. here we find to 1-loop that $\Delta(\phi) = 1 + \frac{1}{12} \frac{\lambda^2}{(16\pi^2)^2}$.

• Let's discuss the RG equation in another way – the "Wilsonian" RG picture. Suppose that we break the path integral $\int [d\phi(k)]$ up into the "fast" modes, with $|k_E| > M$, and the "slow" ones with $|k_E| < M$, for some cutoff M. First do the integral over the fast modes, to get a low-energy effective theory lagrangian for the slow modes. This effective lagrangian has an effective coupling λ . Physics at the end of the day doesn't care about where we put M, but the effective coupling λ must vary with M to compensate for the fact that ultimately physics is M independent. Likewise, if we change $M \to M'$, we need to rescale $\phi' = Z_{\phi}^{-1/2}(M', M)\phi$. The condition that physics is independent of M is

$$\left(\frac{\partial}{\partial \log M} + \beta(\lambda)\frac{\partial}{\partial \lambda} + n\gamma(\lambda)\right)\widetilde{G}_R^{(n)}(p_1,\dots,p_n,M,\lambda) = 0,$$

with

$$\beta = \frac{d\lambda}{d\log M}$$
 $\gamma = \frac{1}{2} \frac{d\ln Z_{\phi}}{d\ln M},$

this is an alternative, equivalent interpretation of the same RG equations seen before (and we wrote it in terms of the un-amputated Green's function for variety).

• Integrating the 1-loop beta function that we found for $\lambda \phi^4$ theory gives

$$\lambda = \lambda_0 \left(1 - \frac{3}{16\pi^3} \lambda_0 \ln(\mu/\mu_0) \right)^{-1}.$$

Or we can write the effective $\lambda(p) = \lambda(1 - (3\lambda/16\pi^2)\log(p/M))^{-1}$.

• All physical parameters, masses couplings etc satisfy the RG eqn:

$$\mathcal{D}P \equiv \left(\frac{\partial}{\partial \ln \mu} + \beta(\lambda)\frac{\partial}{\partial \lambda} + \gamma_m \frac{\partial}{\partial \ln m}\right) P(\lambda, m, \mu) = 0.$$

• Note: $\beta > 0$ means the coupling is small in the IR, and large in the UV. Such theories are "not asymptotically free" or are "IR free." Most theories are like this, e.g. $\lambda \phi^4$ (e.g. the Higgs coupling), QED, Yukawa interactions.

• QED: one loop beta function, $\beta(e) = e^3/12\pi^2$, leads to $\alpha_{eff}(\mu)^{-1} = \alpha_0^{-1} - \frac{1}{6\pi} \log(\mu/\mu_0)$. Again, positive beta function. Discuss the interpretation. Picture for QED of vacuum polarization, screening the bare charge.

4d theories without non-abelian gauge fields all have $\beta > 0$. They then need a cutoff to define them in the UV, and tend to flow to free theories in the IR.

• QCD has $\beta < 0$: the coupling is small in the UV, and large in the IR. Such theories are "asymptotically free;" only non-Abelian gauge theories, like QCD, are like that. Means vacuum anti-screens charges. QCD: one loop beta function $\beta(g) = -Cg^3/2$, leads to $g^{-2}(\mu) = g_0^{-2} + C\log(\mu/\mu_0)$.

• Pictures of RG flows. Briefly outline GUT idea and unification of the running couplings.

• New topic: quantum field theory for fields with spin, in particular spin 1/2 fermions and spin 1 gauge fields, for example for QED ¹. Path integral of same, general form, but need to understand some new issues with the integrations.

¹ Fields with higher spin, e.g. the spin 2 metric, whose quanta are gravitons, can also be treated with the path integral, though they are non-renormalizable so a UV cutoff is required. Additional physics (e.g. string theory) can give a UV completion of the theory above the cutoff.