
2/18/16 Lecture 14 outline

• Last time,

Γ̃
(n)
B (p1, . . . pn;λB, mB, ǫ) = Z

−n/2
φ Γ̃

(n)
R (p1, . . . pn;λR, mR, µ, ǫ).

For fixed physics, the LHS is some fixed quantity. The RHS depends on the renormal-

ization point µ and the scheme. The LHS does not! This leads to what is known as the

renormalization group equations, which state how the renormalized quantities must vary

with µ. Take d/d lnµ of both sides, and use dΓB/dµ = 0. This gives

(

∂

∂ lnµ
+ β(λR)

∂

∂λR
+ γm

∂

∂ lnmR
− nγ

)

Γ̃
(n)
R (p1, . . . pn;λR, mR, µ) = 0

Here

β(λ) ≡
d

d lnµ
λR

γ = 1
2

d

d lnµ
lnZφ

γm =
d lnmR

d lnµ
.

This is the RG equation. Various variants, depending on subtraction procedure (scheme).

For mass dependent scheme, this gives the original Gell-Mann Low equations, where β

and γ depend on the physical mass. The Callan-Symanzik equation replaces ∂/∂ lnµ with

∂/∂ lnm, giving the change as the physical mass is varied. It’s often better to use a mass-

independent scheme, like MS (or MS, where we had introduced the scale M in replacing,

via appropriate counterterms, ( 2ǫ − γ + log(4π/m2) → log(M2/m2)), where m appears as

just another coupling constant. In any case, the RG equation can be integrated, to relate

the renormalized Greens functions at different scales µ and µ′.

Recall also that Γ̃(n) are the 1PI diagrams with external propagators amputated. Al-

ternatively, we could write RG equations for the Green’s functions with the external prop-

agators. Recall that G̃(n) ∼ ZnΓ̃(n), which means that the RG equation differs from the

above by −nγφ → +nγφ; this is how you’ll find it written in some texts.

• Physical picture in QED of the bare charge and running α(µ).

• Understand what β and γ mean: the bare quantities are some function of the

renormalized ones and epsilon. E.g. for λφ4, recall LB = LR +Lc.t. and φB ≡ Z
1/2
φ φR, so

we had Lc.t. = . . .− δλµǫφ4/4! where δλµǫ ≡ λBZ
2
φ − λµǫ, which we’ll rewrite as

λB = µǫZ−2
φ (λ+ δλ) ≡ µǫλZλ
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where

Zλ ≡ Z−2
φ (1 +

δλ
λ
) ≡ 1 +

∑

k>0

ak(λ)ǫ
−k.

The bare parameter λB is independent of µ, whereas λ depends on µ, such that the above

relation holds. Take d/d lnµ of both sides,

0 = (ǫλ+ β(λ, ǫ))Zλ + β(λ, ǫ)λ
dZλ

dλ
.

This equation must hold as a function of ǫ. Now Zλ = 1+ǫnegative, and dZλ/dλ = ǫnegative.

On the other hand, β(λ, ǫ) = dλR/d lnµ is non-singular as ǫ → 0, so β(λ, ǫ) = β(λ) +
∑

n>0 βnǫ
n. Plugging back into the above equation then gives

β(λ, ǫ) = −ǫλ+ β(λ)

β(λ) = λ2 da1
dλ

λ2 dak+1

dλ
= β(λ)

d

dλ
(λak),

where the first comes from ǫn, the second from ǫ0, and the third from ǫ−k, with n, k > 0.

So the beta function is determined entirely from a1. The ak>1 are also entirely deter-

mined by a1. In k-th order in perturbation theory, the leading pole goes like 1/ǫk.

Recall that we found for λφ4, in MS where we found to 1-loop

δm =
λm2

16π2

1

ǫ
, δλ =

3λ2

16π2

1

ǫ
, δZ = 0.

So we find a1(λ) = +3λ/16π2 to one loop. This gives

β(λ) =
3λ2

16π2
+O(λ3).

• Likewise,

γφ(λ, ǫ) =
1
2

d

d lnµ
lnZφ

where

Zφ = 1 +
∑

k

Z−k
φ (λ)ǫ−k.

So

γφ(λ, ǫ) =
1
2β(λ, ǫ)

d

dλ
lnZφ.
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Using β(λ, ǫ) = −ǫλ+ β(λ), we get

γφ = −
1
2λ

d

dλ
Z

(1)
φ .

We similarly have m2
B = (m2 + δm2)Z−1

φ ≡ Zmm2 and

γm(λ) = 1
2

d lnm2

d lnµ
= −

1
2

d lnZm

d lnµ
= −

1
2
β
d lnZm

dλ
= 1

2
λ
dZ

(1)
m

dλ

where Z
(1)
m means the coefficient of 1/ǫ. In all these cases, only the coefficient of 1/ǫ

matters.

In particular, for λφ4 we have

γm(λ) = 1
2λ

dZ
(1)
m

dλ
= 1

2

λ

16π2
−

5

12

λ2

6(16π2)2
+ . . .

where Z
(1)
m means the coefficient of 1/ǫ and . . . are higher orders in perturbation theory,

and

γφ = −
1
2
λ
d

dλ
Z

(1)
φ =

1

12

λ2

(16π2)2
+ . . .
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