2/18/16 Lecture 14 outline

• Last time,

$$\tilde{\Gamma}_B^{(n)}(p_1,\ldots,p_n;\lambda_B,m_B,\epsilon) = Z_{\phi}^{-n/2}\tilde{\Gamma}_R^{(n)}(p_1,\ldots,p_n;\lambda_R,m_R,\mu,\epsilon).$$

For fixed physics, the LHS is some fixed quantity. The RHS depends on the renormalization point μ and the scheme. The LHS does not! This leads to what is known as the renormalization group equations, which state how the renormalized quantities must vary with μ . Take $d/d \ln \mu$ of both sides, and use $d\Gamma_B/d\mu = 0$. This gives

$$\left(\frac{\partial}{\partial \ln \mu} + \beta(\lambda_R)\frac{\partial}{\partial \lambda_R} + \gamma_m \frac{\partial}{\partial \ln m_R} - n\gamma\right)\tilde{\Gamma}_R^{(n)}(p_1, \dots, p_n; \lambda_R, m_R, \mu) = 0$$

Here

$$\beta(\lambda) \equiv \frac{d}{d\ln\mu} \lambda_R$$
$$\gamma = \frac{1}{2} \frac{d}{d\ln\mu} \ln Z_\phi$$
$$\gamma_m = \frac{d\ln m_R}{d\ln\mu}.$$

This is the RG equation. Various variants, depending on subtraction procedure (scheme). For mass dependent scheme, this gives the original Gell-Mann Low equations, where β and γ depend on the physical mass. The Callan-Symanzik equation replaces $\partial/\partial \ln \mu$ with $\partial/\partial \ln m$, giving the change as the physical mass is varied. It's often better to use a massindependent scheme, like MS (or \overline{MS} , where we had introduced the scale M in replacing, via appropriate counterterms, $(\frac{2}{\epsilon} - \gamma + \log(4\pi/m^2) \rightarrow \log(M^2/m^2))$, where m appears as just another coupling constant. In any case, the RG equation can be integrated, to relate the renormalized Greens functions at different scales μ and μ' .

Recall also that $\tilde{\Gamma}^{(n)}$ are the 1PI diagrams with external propagators *amputated*. Alternatively, we could write RG equations for the Green's functions with the external propagators. Recall that $\tilde{G}^{(n)} \sim Z^n \tilde{\Gamma}^{(n)}$, which means that the RG equation differs from the above by $-n\gamma_{\phi} \to +n\gamma_{\phi}$; this is how you'll find it written in some texts.

• Physical picture in QED of the bare charge and running $\alpha(\mu)$.

• Understand what β and γ mean: the bare quantities are some function of the renormalized ones and epsilon. E.g. for $\lambda \phi^4$, recall $\mathcal{L}_B = \mathcal{L}_R + \mathcal{L}_{c.t.}$ and $\phi_B \equiv Z_{\phi}^{1/2} \phi_R$, so we had $\mathcal{L}_{c.t.} = \ldots - \delta \lambda \mu^{\epsilon} \phi^4 / 4!$ where $\delta \lambda \mu^{\epsilon} \equiv \lambda_B Z_{\phi}^2 - \lambda \mu^{\epsilon}$, which we'll rewrite as

$$\lambda_B = \mu^{\epsilon} Z_{\phi}^{-2} (\lambda + \delta_{\lambda}) \equiv \mu^{\epsilon} \lambda Z_{\lambda}$$

where

$$Z_{\lambda} \equiv Z_{\phi}^{-2} (1 + \frac{\delta_{\lambda}}{\lambda}) \equiv 1 + \sum_{k>0} a_k(\lambda) \epsilon^{-k}.$$

The bare parameter λ_B is independent of μ , whereas λ depends on μ , such that the above relation holds. Take $d/d \ln \mu$ of both sides,

$$0 = (\epsilon \lambda + \beta(\lambda, \epsilon)) Z_{\lambda} + \beta(\lambda, \epsilon) \lambda \frac{dZ_{\lambda}}{d\lambda}.$$

This equation must hold as a function of ϵ . Now $Z_{\lambda} = 1 + \epsilon^{negative}$, and $dZ_{\lambda}/d\lambda = \epsilon^{negative}$. On the other hand, $\beta(\lambda, \epsilon) = d\lambda_R/d\ln\mu$ is non-singular as $\epsilon \to 0$, so $\beta(\lambda, \epsilon) = \beta(\lambda) + \sum_{n>0} \beta_n \epsilon^n$. Plugging back into the above equation then gives

$$\beta(\lambda, \epsilon) = -\epsilon\lambda + \beta(\lambda)$$
$$\beta(\lambda) = \lambda^2 \frac{da_1}{d\lambda}$$
$$\lambda^2 \frac{da_{k+1}}{d\lambda} = \beta(\lambda) \frac{d}{d\lambda} (\lambda a_k),$$

where the first comes from ϵ^n , the second from ϵ^0 , and the third from ϵ^{-k} , with n, k > 0.

So the beta function is determined entirely from a_1 . The $a_{k>1}$ are also entirely determined by a_1 . In k-th order in perturbation theory, the leading pole goes like $1/\epsilon^k$.

Recall that we found for $\lambda \phi^4$, in MS where we found to 1-loop

$$\delta_m = \frac{\lambda m^2}{16\pi^2} \frac{1}{\epsilon}, \qquad \delta_\lambda = \frac{3\lambda^2}{16\pi^2} \frac{1}{\epsilon}, \qquad \delta_Z = 0.$$

So we find $a_1(\lambda) = +3\lambda/16\pi^2$ to one loop. This gives

$$\beta(\lambda) = \frac{3\lambda^2}{16\pi^2} + \mathcal{O}(\lambda^3).$$

• Likewise,

$$\gamma_{\phi}(\lambda,\epsilon) = \frac{1}{2} \frac{d}{d\ln\mu} \ln Z_{\phi}$$

where

$$Z_{\phi} = 1 + \sum_{k} Z_{\phi}^{-k}(\lambda) \epsilon^{-k}.$$

So

$$\gamma_{\phi}(\lambda,\epsilon) = \frac{1}{2}\beta(\lambda,\epsilon)\frac{d}{d\lambda}\ln Z_{\phi}.$$

Using $\beta(\lambda, \epsilon) = -\epsilon \lambda + \beta(\lambda)$, we get

$$\gamma_{\phi} = -\frac{1}{2}\lambda \frac{d}{d\lambda} Z_{\phi}^{(1)}.$$

We similarly have $m_B^2 = (m^2 + \delta_{m^2}) Z_{\phi}^{-1} \equiv Z_m m^2$ and

$$\gamma_m(\lambda) = \frac{1}{2} \frac{d\ln m^2}{d\ln \mu} = -\frac{1}{2} \frac{d\ln Z_m}{d\ln \mu} = -\frac{1}{2} \beta \frac{d\ln Z_m}{d\lambda} = \frac{1}{2} \lambda \frac{dZ_m^{(1)}}{d\lambda}$$

where $Z_m^{(1)}$ means the coefficient of $1/\epsilon$. In all these cases, only the coefficient of $1/\epsilon$ matters.

In particular, for $\lambda \phi^4$ we have

$$\gamma_m(\lambda) = \frac{1}{2}\lambda \frac{dZ_m^{(1)}}{d\lambda} = \frac{1}{2}\frac{\lambda}{16\pi^2} - \frac{5}{12}\frac{\lambda^2}{6(16\pi^2)^2} + \dots$$

where $Z_m^{(1)}$ means the coefficient of $1/\epsilon$ and ... are higher orders in perturbation theory, and

$$\gamma_{\phi} = -\frac{1}{2}\lambda \frac{d}{d\lambda} Z_{\phi}^{(1)} = \frac{1}{12} \frac{\lambda^2}{(16\pi^2)^2} + \dots$$