2/18/16 Lecture 14 outline
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For fixed physics, the LHS is some fixed quantity. The RHS depends on the renormal-
ization point p and the scheme. The LHS does not! This leads to what is known as the
renormalization group equations, which state how the renormalized quantities must vary
with pu. Take d/d1Inp of both sides, and use dI'g/du = 0. This gives
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This is the RG equation. Various variants, depending on subtraction procedure (scheme).
For mass dependent scheme, this gives the original Gell-Mann Low equations, where /3
and v depend on the physical mass. The Callan-Symanzik equation replaces 9/91n p with
0/01Inm, giving the change as the physical mass is varied. It’s often better to use a mass-
independent scheme, like MS (or M S, where we had introduced the scale M in replacing,
via appropriate counterterms, (2 — ~ + log(47/m?) — log(M?/m?)), where m appears as
just another coupling constant. In any case, the RG equation can be integrated, to relate
the renormalized Greens functions at different scales p and u'.

Recall also that T'™ are the 1PI diagrams with external propagators amputated. Al-
ternatively, we could write RG equations for the Green’s functions with the external prop-
agators. Recall that G(™ ~ Z"T'(")| which means that the RG equation differs from the
above by —nys — +n7,; this is how you'll find it written in some texts.

e Physical picture in QED of the bare charge and running o(u).

e Understand what § and v mean: the bare quantities are some function of the
renormalized ones and epsilon. E.g. for A\¢?, recall Lg = Lr + L.;. and ¢p = Z;/2¢R, SO
we had L.; = ... — 0 \up*/4! where d\u = )\BZ(?) — A€, which we’ll rewrite as

Ap = pZ (A4 65) = p A2y
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where
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The bare parameter Ap is independent of p, whereas A depends on p, such that the above
relation holds. Take d/dIn u of both sides,
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This equation must hold as a function of . Now Z, = 14€"%9%%¢ and dZ, /d\ = emc9ative,
On the other hand, B(\,€) = dAgr/dInp is non-singular as € — 0, so f(\, ) = B(N) +
Y nso Bn€. Plugging back into the above equation then gives

B\, €) = —eX + B(N)

_ eda
5 = 22

da d
N = B 2y (han),

where the first comes from €”, the second from €, and the third from e =%, with n, k > 0.

So the beta function is determined entirely from a;. The ax~1 are also entirely deter-
mined by a;. In k-th order in perturbation theory, the leading pole goes like 1/¢".
Recall that we found for A\¢*, in MS where we found to 1-loop
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So we find a;(A\) = +3A/1672 to one loop. This gives
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Using B(A, €) = —e\ + 5(A), we get
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where Z\) means the coefficient of 1 /e. In all these cases, only the coefficient of 1/e
matters.

In particular, for A\¢* we have
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where Zﬁr}) means the coefficient of 1/e and ... are higher orders in perturbation theory,
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