2/23/16 Lecture 13 outline
e Last time we wrote down the LSZ formula. There was some interest in seeing more
details, so let’s briefly sketch the idea.
Let |k) be the physical one-particle momentum plane wave state of the full interacting
theory, normalized to (k'|k) = (27)32w,6®) (K — k), and ¢(x) the Heisenberg picture field.
As discussed last time, the FT of (Q|T¢(z)p(0)|Q) ~ iZ/(p? — m? + i€) near p? = m?, so

(kl6(2)[Q2) = (ke " ¢(0)e ™ 771Q) = e (k|(0)|Q) = e 2,/

-,

We scatter wave packets, with some profile F(k), with F.T. f(x =/ (27032% F(k)e
where we define kg = \/k2 + 2, so f(x) solves the KG equation. Now define

ol () =i, / BEG(E, )00 [ (T,1) — [(T,6)00d(T. ).

This depends only on ¢, and we’ll be interested in it at ¢ — 4-co, where it makes asymptotic
single-particle in and out states: (k|¢7 (¢)|€2) = F(k) (the dy’s in ¢/ (t) give a needed 2wy,
to cancel that in d®k/(27)32wy), and (n|¢f (¢)|Q) = %F( e @rn =Pt (| (0)]9),
where w),,, = \/W , which has w,, < p! for any multlpartlcle state. So for any state
¥, im0 (V|67 (1)|Q) = (| f) + 0, where |f) = [ (27T)32wk (k)|k), and the multiparticle
states contributions sum to zero using the Riemann-Lebesgue lemma. Moreover, you can

easily verify that (taking f(|x| — c0) — 0)

t—o0

iz;'? / d'af(2) (0 + p)d(z) = / dtdod’ (t) = ( lim _— lim )e/ (t).

This will be just what we wanted, to get our incoming and outgoing scattering states.
Make separated in states: |f,) = [T ¢/ (t,)|2), and out states { f,n| = (| [T(¢"™)T (tm),
with ¢, — —oo and t,, — +o00. With some work, it can be shown that the |*°, differences

work out right so that
(fmlS = 1|fn) = 2, ™2 / [T @2 folan) [T d*emfm(@m)* T (02 + m2)G (20, 2m).

Take f;(x) — e %% at the end. Thus get that the S-matrix element for m incoming

particles and n outgoing ones is given by
(P1..-PnlSlk1.. . km) = Z (k)2 hmH p; —m; H Gn+m( —pi, ki)
= ]:1

1



Again, G"*™ is the full n + m point Green’s function, including disconnected diagrams
etc. The limit is where we take the external particles on shell. In this limit, the p? — m?
and ka — m? prefactors all go to zero. These zeros kill everything on the RHS except for
the connected contributions to G. Accounting for the fact that we amputate the external
propagators, which go like iZ;(p? — m?)~!, the above becomes

(P1...PulS|k1 .. Ky) = Z(tm)/2Gntm (—pi, ki) = Gm (—pi> kj)

amp,conn,B amp,conn,R

Good: the physical S-matrix elements are computed from the renormalized Greens func-

tions, which we take to be finite in our renormalization procedure.

o Write
< i iZ *  dM? i
_ A 2 — — M2 _— .
AP p? —m? —II'(p?) + ie p2—m2+ie+L4m2 27 4 )pQ—MQ—i—ie
So, using —— = P(1/z) F imé(x), argue that mp(s) = 2ImA(s) for s > 4m?2. (The minus

sign in the definition of A above is related to the special definition of '™ for n =2 and
A ~1/T? )

Analyticity properties. E.g. 2 — 2 scattering. M(s) = M(s*)*. The real part ReM
is continuous across the real axis, whereas the I'm part picks up a minus sign. So the

discontinunity DiscM(s) = 2iImM(s + ie). E.g. = P(1/z) F iwd(x) shows that the

mize

discontinunity of m is —2mid(p? — m?).

e Optical theorem. The S-matrix S = U(t; = oo,t; = —o0) is unitary, STS = 1.
Write S = 1+ 4T, then get 2Im(T) = —i(T — TT) = T'T. Thus

im0 oy -n) (Mr=Miy) = YT [ o My M (27)'5 o) (27)'5 ).

Take f =1, get

where dII,, is the density of states for the process ¢ — m. This is the optical theorem. It
relates the imaginary part of the forward scattering amplitude to the total cross section,
e.g.

ImM (ky, ko — kq, ko) = 2EcmPem ot (K1, ko — anything).
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Recall that the imaginary part of amplitudes is discontinuous across the cut starting

at s = 4m?2. So we can there relate
DiseM(s) = 2iImM(s) ~ /dH IMein|? ~ tor

where cth means cut in half.

Consider e.g. the 1-loop contribution to the 4-point amplitude in A¢*, in the s channel

d'kp 1 1
MD) = 12
2 (2m)* (3p+ k)2 —m? + ie (3p — k)% — m? +ie’

where p = p; + p2. Recall that we evaluated this as (with s = p?)

A2 2 A2
(Z—’H—log ml; -l-A(s),)

where

1—4m?/s+1
A(s) :2—\/1—4m2/slog<m_l>.

The 1/e term (together with some constants, depending on our scheme) is cancelled by
a counterterm diagram. The function A(s) remains. The threshold is where s = 4m?2.
Below threshold, the amplitude is purely real. Above threshold, there is a discontinuous

imaginary part, with
DiseM(s) = 2iImM(s) ~ /dH IMeinl? ~ tor

where cih means cut in half. The tree-level scattering amplitude is thus related to the
imaginary part of the one-loop amplitude.

e For unstable particles, we can again write the full propagator as i(p?—m?2—II'(p?)) %,
and the decay width again shows up via an analog of the optical theorem for 1-particle
to 1-particle scattering. This gives the decay width, which appears in the Breit-Wigner
formula o ~ [p? —m? +il|7?, as T = —m ™' ZImIl'(p*) = 5= > [dl[M(p — f)[*.

elet’s consider more generally

fg)(pl, .. .DPn} AB, MB,€) = Z;n/zfg)(ply .- Pni AR MR, [ €).

For fixed physics, the LHS is some fixed quantity. The RHS depends on the renormal-
ization point p and the scheme. The LHS does not! This leads to what is known as the
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renormalization group equations, which state how the renormalized quantities must vary
with p.
Take d/d1In p of both sides, and use dI'g/du = 0. This gives

0 0 0 F(n) . ~
(31n,u + 5(>\R)% +%nmR81nmR - nv) L'y’ (P1,-- - Pns AR, mR, 1) =0

Here

d
dlnp

pA) =

AR

=1 InZ
g 2dln,un ¢

dlnmg
TYm =

dlnp

This is the RG equation. Various variants, depending on subtraction procedure (scheme).
For mass dependent scheme, this gives the original Gell-Mann Low equations, where (3
and 7 depend on the physical mass. The Callan-Symanzik equation replaces 9/0 In p with
0/01Inm, giving the change as the physical mass is varied. It’s often better to use a mass-
independent scheme, like MS (or M S, where we had introduced the scale M in replacing,
via appropriate counterterms, (% — v + log(4m/m?) — log(M?/m?)), where m appears as
just another coupling constant. In any case, the RG equation can be integrated, to relate

the renormalized Greens functions at different scales p and p’.



