
2/11/16 Lecture 12 outline

• Last time,

i

p2 −m2 −Π′(p2) + iǫ
=

iZ

p2 −m2 + iǫ
+

∫ ∞

∼4m2

dM2

2π
ρ(M2)

i

p2 −M2 + iǫ
.

The LHS has a simple pole, with residue iZ, at p2 = m2. Here Z = |〈λ0|φ(0)|Ω〉|
2 is the

probability for φ(0) to create the lowest energy 1-particle state from the vacuum. Then

there can be a few more simple poles, for p2 slightly below 4m2.

Starting at p2 = 4m2, there is a branch cut, corresponding to producing two more

more free particles. Note A(s) = A(s∗)∗ implies that the real part of M is continuous

across the cut, but the imaginary part can be discontinuous: ImA(s+ iǫ) = −ImA(s− iǫ).

We’ll return to this shortly.

The above equality, back in position space and taking ∂/∂t, leads to the equal time

commutators, [φ(~x, t), φ̇(~y, t)] = iδ(3)(~x− ~y), matching the coefficient of the delta function

on the two sides of the resulting equation gives

1 = Z +

∫ ∞

∼4m2

dM2

2π
ρ(M2) ≥ Z.

Implies that 0 ≤ Z ≤ 1, with Z = 1 iff the theory is a free field theory. Intuitively

reasonable, since Z essentially gives the probability of φ to create a 1-particle asymptotic

in state, given that it can also create other things. Recall what we found before,

δ
(2)
Z = −

λ2

12(16π2)2
1

ǫ
,

so negative (for ǫ > 0).

• Recall LSZ (Lehmann, Symanzik, Zimmermann ’55) from last quarter, now noting

that there are Z factors: the S-matrix element for m incoming and n outgoing particles

〈p1 . . .pn|S|k1 . . .km〉 = lim
o.s

n∏

i=1

(p2i −m2
i )Z

−1/2
i

m∏

j=1

(k2j −m2
j )Z

−1/2
j G̃n+m(−pi, ki).

Here G̃n+m is the full n+m point Green’s function, including disconnected diagrams etc.

The limit is where we take the external particles on shell. In this limit, the p2i −m2
i and

k2j −m2
j prefactors all go to zero. These zeros kill everything on the RHS except for the

connected contributions to G̃. Accounting for the fact that we amputate the external

propagators, which go like iZi(p
2
i −m2

i )
−1, the above becomes

〈p1 . . .pn|S|k1 . . .km〉 = Z(n+m)/2G̃n+m
amp,conn,B(−pi, ki) = G̃n+m

amp,conn,R(−pi, kj)
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Good: the physical S-matrix elements are computed from the renormalized Greens func-

tions, which we take to be finite in our renormalization procedure.

More detail: Let |k〉 be the physical one-particle momentum plane wave state of the

full interacting theory, normalized to 〈k′|k〉 = (2π)32ωkδ
(3)(~k′−~k), and φ(x) the Heisenberg

picture field. As discussed last time, the FT of 〈Ω|Tφ(x)φ(0)|Ω〉 ∼ iZ/(p2 −m2 + iǫ) near

p2 = m2, so

〈k|φ(x)|Ω〉 = 〈k|eiP ·xφ(0)e−iP ·x|Ω〉 = eik·x〈k|φ(0)|Ω〉 ≡ eik·xZ
1/2
φ .

We scatter wave packets, with some profile F (~k), with F.T. f(x) =
∫

d3k
(2π)32ωk

F (~k)e−ik·x,

where we define k0 =

√
~k2 + µ2, so f(x) solves the KG equation. Now define

φf (t) = iZ
−1/2
φ

∫
d3~x(φ(~x, t)∂0f(~x, t)− f(~x, t)∂0φ(~x, t)).

This depends only on t, and we’ll be interested in it at t→ ±∞, where it makes asymptotic

single-particle in and out states: 〈k|φf (t)|Ω〉 = F (~k) (the ∂0’s in φ
f (t) give a needed 2ωk

to cancel that in d3k/(2π)32ωk), and 〈n|φf (t)|Ω〉 =
ωpn+p0

n

2ωpn
F (~pn)e

−i(ωpn−p0

n)t〈n|φ(0)|Ω〉,

where ωpn
≡

√
~p2n + µ2, which has ωpn

< p0n for any multiparticle state. So for any state

ψ, limt→±∞〈ψ|φf (t)|Ω〉 = 〈ψ|f〉+ 0, where |f〉 ≡
∫

d3~k
(2π)32ωk

F (~k)|~k〉, and the multiparticle

states contributions sum to zero using the Riemann-Lebesgue lemma. Moreover, you can

easily verify that (taking f(|x| → ∞) → 0)

iZ
−1/2
φ

∫
d4xf(x)(∂2 + µ2)φ(x) =

∫
dt∂0φ

f (t) = ( lim
t→−∞

− lim
t→∞

)φf (t).

This will be just what we wanted, to get our incoming and outgoing scattering states.

Make separated in states: |fn〉 =
∏
φfn(tn)|Ω〉, and out states 〈fm| = 〈Ω|

∏
(φfm)†(tm),

with tn → −∞ and tm → +∞. With some work, it can be shown that the |∞−∞ differences

work out right so that

〈fm|S − 1|fn〉 = Z
−(n+m)/2
φ

∫ ∏

n

d4xnfn(xn)
∏

m

d4xmfm(xm)∗
∏

r

i(∂2r +m2
r)G(xn, xm).

Take fi(x) → e−ikixi at the end. Thus get that the S-matrix element for m incoming

particles and n outgoing ones is given by

〈p1 . . .pn|S|k1 . . .km〉 = Z
−(n+m)/2
φ lim

o.s

n∏

i=1

(p2i −m2
i )

m∏

j=1

(k2j −m2
j )G̃

n+m(−pi, ki).
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Again, G̃n+m is the full n +m point Green’s function, including disconnected diagrams

etc. The limit is where we take the external particles on shell. In this limit, the p2i −m2
i

and k2j −m2
j prefactors all go to zero. These zeros kill everything on the RHS except for

the connected contributions to G̃. Accounting for the fact that we amputate the external

propagators, which go like iZi(p
2
i −m2

i )
−1, the above becomes

〈p1 . . .pn|S|k1 . . .km〉 = Z(n+m)/2G̃n+m
amp,conn,B(−pi, ki) = G̃n+m

amp,conn,R(−pi, kj)

Good: the physical S-matrix elements are computed from the renormalized Greens func-

tions, which we take to be finite in our renormalization procedure.

• Write

−i∆̃(p2) =
i

p2 −m2 −Π′(p2) + iǫ
=

iZ

p2 −m2 + iǫ
+

∫ ∞

∼4m2

dM2

2π
ρ(M2)

i

p2 −M2 + iǫ
.

So, using 1
x±iǫ = P (1/x)∓ iπδ(x), argue that πρ(s) = 2Im∆̃(s) for s ≥ 4m2. (The minus

sign in the definition of ∆̃ above is related to the special definition of Γ̃(n) for n = 2 and

∆̃ ∼ 1/Γ̃(2).)

Analyticity properties. E.g. 2 → 2 scattering. A(s) = A(s∗)∗. Recall the definition

〈f |(S − 1)|i〉 ≡ iAfi(2π)
4δ4(pf − pi)

sometimes write M instead of A. E.g. for φ4 at tree-level 2-2 scattering, get A ∼ λ.

The real part ReA is continuous across the real axis, whereas the Im part picks up a

minus sign. So the discontinunity DiscA(s) = 2iImA(s+iǫ). E.g. 1
x±iǫ = P (1/x)∓iπδ(x)

shows that the discontinunity of 1
p2−m2+iǫ − (c.c.) is −2πiδ(p2 −m2).

• Optical theorem. The S-matrix S = U(tf = ∞, ti = −∞) is unitary, S†S = 1.

Write S = 1 + iT , then get 2Im(T ) ≡ −i(T − T †) = T †T .
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