2/11/16 Lecture 12 outline

• Last time,

$$\frac{i}{p^2 - m^2 - \Pi'(p^2) + i\epsilon} = \frac{iZ}{p^2 - m^2 + i\epsilon} + \int_{\sim 4m^2}^{\infty} \frac{dM^2}{2\pi} \rho(M^2) \frac{i}{p^2 - M^2 + i\epsilon}.$$

The LHS has a simple pole, with residue iZ, at $p^2 = m^2$. Here $Z = |\langle \lambda_0 | \phi(0) | \Omega \rangle|^2$ is the probability for $\phi(0)$ to create the lowest energy 1-particle state from the vacuum. Then there can be a few more simple poles, for p^2 slightly below $4m^2$.

Starting at $p^2 = 4m^2$, there is a branch cut, corresponding to producing two more more free particles. Note $\mathcal{A}(s) = \mathcal{A}(s^*)^*$ implies that the real part of \mathcal{M} is continuous across the cut, but the imaginary part can be discontinuous: $Im\mathcal{A}(s+i\epsilon) = -Im\mathcal{A}(s-i\epsilon)$. We'll return to this shortly.

The above equality, back in position space and taking $\partial/\partial t$, leads to the equal time commutators, $[\phi(\vec{x},t), \dot{\phi}(\vec{y},t)] = i\delta^{(3)}(\vec{x}-\vec{y})$, matching the coefficient of the delta function on the two sides of the resulting equation gives

$$1 = Z + \int_{-4m^2}^{\infty} \frac{dM^2}{2\pi} \rho(M^2) \ge Z.$$

Implies that $0 \le Z \le 1$, with Z = 1 iff the theory is a free field theory. Intuitively reasonable, since Z essentially gives the probability of ϕ to create a 1-particle asymptotic in state, given that it can also create other things. Recall what we found before,

$$\delta_Z^{(2)} = -\frac{\lambda^2}{12(16\pi^2)^2} \frac{1}{\epsilon},$$

so negative (for $\epsilon > 0$).

• Recall LSZ (Lehmann, Symanzik, Zimmermann '55) from last quarter, now noting that there are Z factors: the S-matrix element for m incoming and n outgoing particles

$$\langle \mathbf{p_1} \dots \mathbf{p_n} | S | \mathbf{k_1} \dots \mathbf{k_m} \rangle = \lim_{o.s} \prod_{i=1}^n (p_i^2 - m_i^2) Z_i^{-1/2} \prod_{j=1}^m (k_j^2 - m_j^2) Z_j^{-1/2} \tilde{G}^{n+m}(-p_i, k_i).$$

Here \tilde{G}^{n+m} is the full n+m point Green's function, including disconnected diagrams etc. The limit is where we take the external particles on shell. In this limit, the $p_i^2 - m_i^2$ and $k_j^2 - m_j^2$ prefactors all go to zero. These zeros kill everything on the RHS except for the connected contributions to \tilde{G} . Accounting for the fact that we amputate the external propagators, which go like $iZ_i(p_i^2 - m_i^2)^{-1}$, the above becomes

$$\langle \mathbf{p_1} \dots \mathbf{p_n} | S | \mathbf{k_1} \dots \mathbf{k_m} \rangle = Z^{(n+m)/2} \tilde{G}^{n+m}_{amp,conn,B}(-p_i, k_i) = \tilde{G}^{n+m}_{amp,conn,R}(-p_i, k_j)$$

Good: the physical S-matrix elements are computed from the renormalized Greens functions, which we take to be finite in our renormalization procedure.

More detail: Let $|k\rangle$ be the physical one-particle momentum plane wave state of the full interacting theory, normalized to $\langle k'|k\rangle = (2\pi)^3 2\omega_k \delta^{(3)}(\vec{k'}-\vec{k})$, and $\phi(x)$ the Heisenberg picture field. As discussed last time, the FT of $\langle \Omega | T\phi(x)\phi(0) | \Omega \rangle \sim iZ/(p^2 - m^2 + i\epsilon)$ near $p^2 = m^2$, so

$$\langle k|\phi(x)|\Omega\rangle = \langle k|e^{iP\cdot x}\phi(0)e^{-iP\cdot x}|\Omega\rangle = e^{ik\cdot x}\langle k|\phi(0)|\Omega\rangle \equiv e^{ik\cdot x}Z_{\phi}^{1/2}.$$

We scatter wave packets, with some profile $F(\vec{k})$, with F.T. $f(x) = \int \frac{d^3k}{(2\pi)^3 2\omega_k} F(\vec{k}) e^{-ik \cdot x}$, where we define $k_0 = \sqrt{\vec{k}^2 + \mu^2}$, so f(x) solves the KG equation. Now define

$$\phi^{f}(t) = iZ_{\phi}^{-1/2} \int d^{3}\vec{x}(\phi(\vec{x},t)\partial_{0}f(\vec{x},t) - f(\vec{x},t)\partial_{0}\phi(\vec{x},t))$$

This depends only on t, and we'll be interested in it at $t \to \pm \infty$, where it makes asymptotic **single-particle** in and out states: $\langle k | \phi^f(t) | \Omega \rangle = F(\vec{k})$ (the ∂_0 's in $\phi^f(t)$ give a needed $2\omega_k$ to cancel that in $d^3k/(2\pi)^3 2\omega_k$), and $\langle n | \phi^f(t) | \Omega \rangle = \frac{\omega_{p_n} + p_n^0}{2\omega_{p_n}} F(\vec{p}_n) e^{-i(\omega_{p_n} - p_n^0)t} \langle n | \phi(0) | \Omega \rangle$, where $\omega_{p_n} \equiv \sqrt{\vec{p}_n^2 + \mu^2}$, which has $\omega_{p_n} < p_n^0$ for any multiparticle state. So for **any** state ψ , $\lim_{t\to\pm\infty} \langle \psi | \phi^f(t) | \Omega \rangle = \langle \psi | f \rangle + 0$, where $| f \rangle \equiv \int \frac{d^3\vec{k}}{(2\pi)^3 2\omega_k} F(\vec{k}) | \vec{k} \rangle$, and the multiparticle states contributions sum to zero using the Riemann-Lebesgue lemma. Moreover, you can easily verify that (taking $f(|x| \to \infty) \to 0$)

$$iZ_{\phi}^{-1/2} \int d^4x f(x)(\partial^2 + \mu^2)\phi(x) = \int dt \partial_0 \phi^f(t) = (\lim_{t \to -\infty} -\lim_{t \to \infty})\phi^f(t).$$

This will be just what we wanted, to get our incoming and outgoing scattering states.

Make separated in states: $|f_n\rangle = \prod \phi^{f_n}(t_n) |\Omega\rangle$, and out states $\langle f_m | = \langle \Omega | \prod (\phi^{f_m})^{\dagger}(t_m)$, with $t_n \to -\infty$ and $t_m \to +\infty$. With some work, it can be shown that the $|_{-\infty}^{\infty}$ differences work out right so that

$$\langle f_m | S - 1 | f_n \rangle = Z_{\phi}^{-(n+m)/2} \int \prod_n d^4 x_n f_n(x_n) \prod_m d^4 x_m f_m(x_m)^* \prod_r i(\partial_r^2 + m_r^2) G(x_n, x_m).$$

Take $f_i(x) \to e^{-ik_i x_i}$ at the end. Thus get that the S-matrix element for *m* incoming particles and *n* outgoing ones is given by

$$\langle \mathbf{p_1} \dots \mathbf{p_n} | S | \mathbf{k_1} \dots \mathbf{k_m} \rangle = Z_{\phi}^{-(n+m)/2} \lim_{o.s} \prod_{i=1}^n (p_i^2 - m_i^2) \prod_{j=1}^m (k_j^2 - m_j^2) \tilde{G}^{n+m}(-p_i, k_i).$$

Again, \tilde{G}^{n+m} is the full n+m point Green's function, including disconnected diagrams etc. The limit is where we take the external particles on shell. In this limit, the $p_i^2 - m_i^2$ and $k_j^2 - m_j^2$ prefactors all go to zero. These zeros kill everything on the RHS except for the connected contributions to \tilde{G} . Accounting for the fact that we amputate the external propagators, which go like $iZ_i(p_i^2 - m_i^2)^{-1}$, the above becomes

$$\langle \mathbf{p_1} \dots \mathbf{p_n} | S | \mathbf{k_1} \dots \mathbf{k_m} \rangle = Z^{(n+m)/2} \tilde{G}^{n+m}_{amp,conn,B}(-p_i, k_i) = \tilde{G}^{n+m}_{amp,conn,R}(-p_i, k_j)$$

Good: the physical S-matrix elements are computed from the renormalized Greens functions, which we take to be finite in our renormalization procedure.

• Write

$$-i\widetilde{\Delta}(p^2) = \frac{i}{p^2 - m^2 - \Pi'(p^2) + i\epsilon} = \frac{iZ}{p^2 - m^2 + i\epsilon} + \int_{\sim 4m^2}^{\infty} \frac{dM^2}{2\pi} \rho(M^2) \frac{i}{p^2 - M^2 + i\epsilon}$$

So, using $\frac{1}{x\pm i\epsilon} = P(1/x) \mp i\pi\delta(x)$, argue that $\pi\rho(s) = 2Im\widetilde{\Delta}(s)$ for $s \ge 4m^2$. (The minus sign in the definition of $\widetilde{\Delta}$ above is related to the special definition of $\widetilde{\Gamma}^{(n)}$ for n = 2 and $\widetilde{\Delta} \sim 1/\widetilde{\Gamma}^{(2)}$.)

Analyticity properties. E.g. $2 \to 2$ scattering. $\mathcal{A}(s) = \mathcal{A}(s^*)^*$. Recall the definition

$$\langle f|(S-1)|i\rangle \equiv i\mathcal{A}_{fi}(2\pi)^4 \delta^4(p_f - p_i)$$

sometimes write \mathcal{M} instead of \mathcal{A} . E.g. for ϕ^4 at tree-level 2-2 scattering, get $\mathcal{A} \sim \lambda$.

The real part $Re\mathcal{A}$ is continuous across the real axis, whereas the Im part picks up a minus sign. So the discontinuity $Disc\mathcal{A}(s) = 2iIm\mathcal{A}(s+i\epsilon)$. E.g. $\frac{1}{x\pm i\epsilon} = P(1/x)\mp i\pi\delta(x)$ shows that the discontinuity of $\frac{1}{p^2-m^2+i\epsilon} - (c.c.)$ is $-2\pi i\delta(p^2-m^2)$.

• Optical theorem. The S-matrix $S = U(t_f = \infty, t_i = -\infty)$ is unitary, $S^{\dagger}S = 1$. Write S = 1 + iT, then get $2Im(T) \equiv -i(T - T^{\dagger}) = T^{\dagger}T$.