
2/9/16 Lecture 11 outline

• Last time, consider λφ4 in MS. To one loop, we found

δm =
λm2

16π2

1

ǫ
, δλ =

3λ2

16π2

1

ǫ
, δZ = 0.

Now consider the propagator to two loops. Diagram 1 is a one-loop diagram with the

1-loop δλ counterterm at the vertex. Diagram 2 is a one-loop diagram with the 1-loop δm

counterterm on the internal propagator. Diagram 3 is a two-loop diagram which looks like

a double-scoop of the 1-loop diagrams. Diagram 4 is a line which cuts through a circle (see

your HW). Diagram 5 has no loops, but an insertion of the 2-loop δm and δZ counter terms.

Let’s consider the pole terms in the diagrams. Diagram 1 requires no new computation:

we can obtain it from the previous 1-loop contribution to −iΠ′ by simply replacing there

λ → δλ. This gives

−iΠ′

diag 1 = i
λ2

(16π2)2
m2 3

2

(
2

ǫ2
−

1

ǫ
ln

m2

4πµ2
+

1

ǫ
−

γ

ǫ

)
+O(ǫ0)

Diagram 2 has 2 propagators in the loop, with the 1-loop −iδm vertex insertion, which

gives (using the integral given at the start, now with n = 2 instead of n = 1):

−iΠ′

diag 2 = i
λ2

(16π2)2
m2 1

2

(
2

ǫ2
−

1

ǫ
ln

m2

4πµ2
−

γ

ǫ

)
+O(ǫ0)

where the overall 1
2
is a symmetry factor, as in the 1-loop diagram. Diagram 3 contributes

(with two symmetry factors of 1
2)

−iΠ′

diag 3 =
1

4
(−iλ)2µ2ǫ

∫
dDk

(2π)D
i

k2 −m2

∫
dDq

(2π)D

(
i

q2 −m2

)2

,

where q is the integral over the lower loop, which has two propagators. This gives

−i
λ2

(16π2)2
m2 1

2

(
2

ǫ2
−

2

ǫ
ln

m2

4πµ2
+

1

ǫ
−

2γ

ǫ

)
+O(ǫ0)

Diagram 4 gives

i
λ2

(16π2)2

(
−
m2

ǫ2
+

1

ǫ

(
m2 ln

m2

4πµ2
+

1

12
p2 + (γ −

3

2
m2)

))
+O(ǫ0).

(The finite (ǫ0) contribution to diagram 4 can be evaluated by writing out the integrals

and using the Feynman trick, but it is quite complicated for general m 6= 0. In the HW,

you will evaluate it for m = 0, where it simplifies.)
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Diagram 5 are the two-loop counterterms, iδ
(2)
Z p2− iδ

(2)
m . We should then take for the

2-loop contributions to the counterterms

δm(2) =
λ2

(16π2)2

(
2

ǫ2
−

1

2ǫ

)
m2,

δ
(2)
Z = −

λ2

12(16π2)2
1

ǫ
.

The terms involving lnm2/4πµ2 all cancel. This happens for all loops. MS is a mass

independent scheme, in that δλ, δZ, and δm/m2 are independent of m and µ.

• Renormalized and bare Greens functions. Recall that ΦB ≡ Z
1/2
φ φ, and the defi-

nition of the 1PI Green’s functions Γ̃(n), and in particular that they have all n external

propagators amputated. It then follows that

Γ̃
(n)
B (p1, . . . pn;λB, mB, ǫ) = Z

−n/2
φ Γ̃

(n)
R (p1, . . . pn;λR, mR, µ, ǫ).

For fixed physics, the LHS is some fixed quantity. The RHS depends on the renormal-

ization point µ and the scheme. The LHS does not! This leads to what is known as the

renormalization group equations, which state how the renormalized quantities must vary

with µ. Rewrite above as

Z
n/2
φ Γ̃

(n)
B (p1, . . . pn;λB, mB, ǫ) = Γ̃

(n)
R (p1, . . . pn;λR, mR, µ, ǫ).

Now the RHS is finite, so the LHS must be too. So we can take ǫ → 0 without a problem.

• Before getting into the renormalization group, let’s take a little detour. Recall that

∫
d4xeipx〈Ω|Tφ(x)φ(0)|Ω〉 =

i

p2 −m2 −Π′(p2) + iǫ
.

Here |Ω〉 is the full, interacting vacuum and φ are the full (Heisenberg picture) operators.

Now insert a complete set of states (all single and multi-particle states) ,

1 = |Ω〉〈Ω|+
∑

λ

∏

i

∫
d3pi
(2π)3

1

2Ep(λ)
|λp〉〈λp|

where λ are all eigenstates of the full H, and λp is a boosted version, to give an

eigenstate of ~P , with spatial momentum ~p. Now use φ(x) = eiPµx
µ

φ(0)e−iPµx
µ

, so
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〈Ω|φ(x)|λp〉 = 〈Ω|φ(0)|λ0〉e
−ipx (where p0 = Ep ≡

√
|~p|2 +m2

λ) and replace
∫

d3~p
(2π)32Ep

→
∫

d4p
(2π)4

i
p2

−m2

λ
+iǫ

to get

〈Ω|φ(x)φ(0)|Ω〉 =
∑

λ

∫
d4p

(2π)4
i

p2 −m2
λ + iǫ

e−ipx|〈Ω|φ(0)|λ0〉|
2.

So ∫
d4xeipx〈Ω|Tφ(x)φ(0)|Ω〉 =

∫
∞

0

dM2

2π
ρ(M2)

i

p2 −M2 + iǫ
,

where

ρ(M2) =
∑

λ

2πδ(M2 −m2
λ)|〈Ω|φ(0)|λ〉|

2 > 0

is the Kallen-Lehmann spectral density. Find ρ(M2) = 2πδ(M2 −m2)Z for M2 ≪ 4m2.

For M2 slightly below 4m2 there are new delta functions, at the bound states. Starting at

4m2, ρ(M2) is some positive function. This implies that

i

p2 −m2 −Π′(p2) + iǫ
=

iZ

p2 −m2 + iǫ
+

∫
∞

∼4m2

dM2

2π
ρ(M2)

i

p2 −M2 + iǫ
.

The LHS has a simple pole, with residue iZ, at p2 = m2. Here Z = |〈λ0|φ(0)|Ω〉|
2 is the

probability for φ(0) to create the lowest energy 1-particle state from the vacuum. Then

there can be a few more simple poles, for p2 slightly below 4m2.

Starting at p2 = 4m2, there is a branch cut, corresponding to producing two more more

free particles. Note M(s) = M(s∗)∗ implies that the real part of M is continuous across

the cut, but the imaginary part can be discontinuous: ImM(s + iǫ) = −ImM(s − iǫ).

We’ll return to this shortly.

The above equality, back in position space and taking ∂/∂t, leads to the equal time

commutators, [φ(~x, t), φ̇(~y, t)] = iδ(3)(~x− ~y), matching the coefficient of the delta function

on the two sides of the resulting equation gives

1 = Z +

∫
∞

∼4m2

dM2

2π
ρ(M2) ≥ Z.

Implies that 0 ≤ Z ≤ 1, with Z = 1 iff the theory is a free field theory. Intuitively

reasonable, since Z essentially gives the probability of φ to create a 1-particle asymptotic

in state, given that it can also create other things. Recall what we found before,

δ
(2)
Z = −

λ2

12(16π2)2
1

ǫ
,

so negative (for ǫ > 0).
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