3/10/16 Homework 5. Due Mar 18

Consider a variant of QED, with the following fields:

(1) The photon field A_{μ} , and a (4-component) Fermion field ψ_q of electric charge q and mass m, as usual for QED.

(2) In addition, there is massless Fermion field λ of zero electric charge, $\mathcal{L} \supset \overline{\lambda} i \partial \lambda$.

(3) In addition, there is a complex scalar field ϕ of electric charge q and mass m.

(4) An interaction term $\mathcal{L} \supset h\phi^{\dagger}\bar{\lambda}\psi + h\phi\bar{\psi}\lambda$. There are also the usual interaction terms needed for the photon to couple to the charge fields, consistent with gauge invariance.

1. Write the Lagrangian and the Feynman rules.

- 2. Write the 1-loop correction to the λ propagator, including also effects from a counterterm for the λ kinetic term renormalization. Use the Feynman trick to combine denominators and evaluate the momentum loop integral.
- 3. Continuing the previous question, what should the counter term be in MS?